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Abstract. For improving the performance of the Particle Swarm Optimization (PSO), two major 
strategies are used, one is the parameter modifying method, and the other is the population 
diversity method. For these two methods, the first one obtains the balance between the local search 
ability and the global search ability of the PSO by using the parameter adjusting and the 
parameter adding or parameter reducing, in that it has less effect on the algorithm complexity and 
has attracted a great of attentions. One of the well-known improved PSO algorithms of the 
parameter modifying method is inertia weight PSO, by introducing the inertia weight, the 
performance of the original PSO is improved greatly. Experimentally, we find that the 
performance of the algorithm can be improved more when adding a constraint factor to the inertia 
weight. In this paper, we empirically study the effects of the constraint factor on the performance 
of the inertia weight PSO. Based on the experimental results, we obtain the optimal selection of the 
constraint factor and extend the ability of the inertia weight PSO. 
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1. Introduction 
 

The Particle Swarm Optimization (PSO) is an agent based search algorithm, which is first proposed by 
Kennedy et al [1]. The algorithm is motivated by the group organism behavior such as bee swarm, fish 
school, and the bird flock. The basic principle of PSO is to find the optimal solution through the 
cooperation and competition among particles. For the algorithm, the solution of the problem is treated as 
a volume-less particle with a special velocity in the search space. Through sharing the information with 
the individuals and companions, the particle dynamically adjusts its velocity and position and flies to an 
optimal orientation, and then makes the population evolve to an optimal solution through an iterative 
process. 

Compared with evolutionary computation, the PSO is a more efficient parallel search algorithm. 
Because of the quick convergence speed and the fewer parameter settings, in the recent decade, the PSO 
has achieved a quick development, and a variety of proposals aiming at improving the performance of it 
had also been presented in many literatures. In generally, there are two main strategies for the 
improvements: (1) the parameter modifying methods, which revising the parameters of the original PSO 
to obtain the balance between the local and global search ability while making less effect on the 
algorithm complexity, these algorithms include the inertia weight PSO [2, 3], the constriction PSO [4], 
the self-organization PSO [5], etc.;  (2) population diversity methods, for avoiding the premature 
convergence caused by the loss of the population diversity, these methods borrow the ideas from the 
natural selection and the social behavior to improve the performance of the algorithm, the family of them 
include different topology PSO [6,7,8], social division PSO [9], cooperative PSO [10,11], ecological 
selection PSO [12], etc.  
 A more efficient optimization algorithm must obtain a better balance between the local and global 
search ability, which means that the algorithm must has the ability to maintain a better local exploitation 
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and global exploration ability. Exploration means that the particle departs from a solution and is able to 
find other promising candidates; while exploitation means that the particle is capable of going along the 
old path to obtain more optimal candidates. According to the “No free lunch theory” of optimization, the 
performance improvement of the algorithm is always not “free”. The performance improvement of the 
algorithm must rely on much more additional computation and information, which may lead to the 
increase of the algorithm complexity. In other words, the increase of the locale search ability always 
means to the decrease of the global search ability, and vice versa. Compared with the population 
diversity methods, the parameter modifying methods develop the performance by revising the parameters 
of the original PSO, in that it has less effect on the algorithm complexity and has attracted a great of 
attentions. 

In [2], Shi and Eberhart introduced the inertia weight to the velocity update equation of the original 
PSO. The present of the inertia weight increases the convergence speed greatly, and obtains a better 
balance between exploitation and exploration of the solution space, while having little increase of the 
algorithm complexity. Therefore, it is valuable to make deeper study on it. We find that, when adding a 
suitable constraint factor to the inertia weight, the algorithm appears to be more efficient. To validate the 
situation, in this paper, we empirically study the phenomena. Four different benchmark functions are 
selected as testing functions, and the convergence speed, the search accuracy, and the proportion of 
optimization successes are compared under different constraint factor values. Through the experimental 
results, we obtain the selection evidence for an optimal constraint factor, which is able to make the 
algorithm do better than the original inertia weight PSO. 
 
2. PSO algorithm and its improvement  
 

The PSO algorithm can be described as follows: in the D-dimensional search space, there are n
particles forming a population { }1 2, , , D= LX x x x , each particle has a D-dimensional position vector ix
and a D-dimensional velocity vector iv . The vector ix represents a promising solution of the 
optimization problem, and the velocity affects the convergence speed of the algorithm. 

 The velocity vector and the position vector of the i-th particle can be described as 
( )1 2, ,... T

i i i iDv v v=v and ( )1 2, , , T
i i i iDx x x= Lx , respectively. Through the search procedure in the D-

dimensional space, the particle “remembers” its own local best position ( )1 2, ,... T
i i i iDp p p=p . By 

comparing among the companions’ information, the particle gets the global best 

position ( )1 2, ,...
T

g g g gDp p p=p . At each generation, each particle updates the velocity by “following up” 

two experience values ( ip and gp ) and its own velocity inertia, then updates its position, and “flies” to a 
promising position. Because of the convergence speed, Shi et al. [2] modified the velocity update 
equation by introducing the inertia weight w to the original PSO, and the improved PSO are 
manipulated according the following equation: 

( ) ( )1 1 2 2( 1) ( ) ( ) ( ) ( ) ( )i i i i i i g it t c r t t c r t t+ = + − + −v v p x p x  (1) 

( 1) ( ) ( 1)i i it t t+ = + +x x v  (2) 
where t represents the index of iteration, i indexes a particle, 1, 2,...,i m= , and m represents the 
population size. 1 ( )ir ⋅ and 2 ( )ir ⋅ are two random functions in range [0,  1] . In addition, 1c and 2c
are two positive constants, which can be looked as the personal cognitive factor and the social 
cognitive factor, respectively. This improved PSO is called the Standard Particle Swarm 
Optimization (SPSO), and notated as Inertia Weight PSO (IWPSO) in our paper. 
 By introducing the inertia weight, the performance of the original PSO has been significantly 
improved. By linearly decreasing the inertia weight from a relatively large value to a small value 
through the course of the PSO run [3], the PSO tends to have more global search ability at the 
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beginning of the run while having more local search ability near the end of the run. The inertia 
weight update equation is described as Eq. (3): 

( )
max

start start end
tw w w w

T
= − −  (3) 

where t represents the index of iteration, startw and endw are the beginning value and the end value 
of the inertia weight, respectively, and maxT is the maximum iteration times. 

Through deeper experiments, we find that, when adding a suitable constraint factor f to the 
inertia weight updating equation such that: 

( )
max

1
start start end

tw w w w
f T

= − ⋅ −  (4) 

By Eq. (4), the algorithm appears to be more efficient. In the follows of this paper, we will empirically 
study the effects of the constraint factor f on the performance of the IWPSO. 
 
3. Experimental settings 
 

For comparison, four different benchmark functions, Sphere, Rosenbrock, Griewank and Rastrigrin, 
are used as testing functions. Their graphs are shown in Fig. 1, where (a) and (b) are the graph of 
function Sphere and Rosenbrock respectively, while (c) and (d) are the local graph of function Griewank 
and Rastrigrin respectively. For all these functions, the global optimal value is *( ) 0f x = . Among them, 
Sphere and Rosenbrock are single modal functions, they only have global optimal value in the search 
space and are used for testing the global convergence performance of an algorithm. While Griewank and 
Rastrigrin are multi-modal functions, they have a number of local optimal values, which are hard for 
optimization problem, and are used for testing the local exploitation ability and the global exploration 
ability. Table 1 shows the parameter settings for these testing functions, including dimension, search 
range, and the global error. 

 

(a)                                                                                 (b)  



International Journal of  
Soft Computing And Software Engineering (JSCSE)
ISSN: 2251-7545 
Vol.2,No.2, 2012 DOI: 10.7321/jscse.v2.n2.1

4

(c)                                                                             (d)  
 Figure 1. Graph of four benchmark functions (D=2) 

 Following the suggestion in [3] and for the purpose of comparison, the method used in [11] is adopted 
here for population initialization, and the other parameters needed in the experiments are set as follows: 
the maximum number of generations is set as 1000; the dimension of each particle is 30; the population 
size is 40; the linearly decreasing inertia weight is used with 0.9startw = and 0.4endw = ; both 1c and 

2c are set as 2.05; the maximum velocity maxv and the maximum position maxx are set to be equal, their 
value for each function are listed in Table 2. 
 

Table 1. Parameter settings for the benchmark function 

Function Function  Form Dim. Search 
Space 

Global 
Error 

Sphere 2
1

1

( )
n

i
i

f x x
=

=∑ 30 [ ]30100,100−
210−

Rosenbrock 
1

2 2 2
2 1

1

( ) (100( ) ( 1) )
n

i i i
i

f x x x x
−

+
=

= − + −∑ 30 [ ]3030,30− 100 

Griewank 2
3

1 1

1( ) cos 1
4000

nn
i

i
i i

x
f x x

i= =

 = − + 
 

∑ ∏ 30 [ ]30600,600− 0.05 

Rastrigrin 2
4

1

( ) ( 10cos(2 ) 10)
D

i i
i

f x x xπ
=

= − +∑ 30 [ ]305.12,5.12− 100 

Table 2. maxv and maxx settings for each testing function 

Function maxv = maxx
f1 100
f2 100 
f3 10 
f4 600
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4. Experimental results and analysis  
 

In this section, the effects of the constraint factor f on the performance of the inertia weight PSO 
(IWPSO) is investigated through empirical study, different values of the constraint factor are selected 
and three measures indices, convergence speed, search accuracy, and proportion of successes, are used to 
evaluate the optimization.  
 The convergence speed can be reflected by the iteration times to obtain optima. An algorithm would be 
thought to be not convergent if it dose not obtain the optima after a fixed number of search runs. The 
convergence speed can also be depicted by the convergence curve obviously, and a large gradient of the 
curve means a quick convergence speed. Fig. 2 depicts the average convergence curves with different 
constraints factor f for the four benchmark functions, in which, (a), (b), (c), and (d) are the curves for 
function Sphere, Rosenbrock, Rastrigrin and Griewank, respectively. Where the horizontal coordinate is 
the number of the iterations, and the vertical coordinate is the logarithm of the function values (fitness 
function values). 

As shown in Fig. 2, for all testing functions, when 1f = , the convergence speed is the lowest, and 
when 0.05f = , the convergence speed is the fastest. While f decreasing from 1 to 0.05, the convergence 
speed increases, further decrease in f value beyond 0.05, the convergence speed increases not any more. 
 Table 3 lists the mean best fitness, which reflects the search accuracy under different constraint factor 
f. Search accuracy reflects the best search result attained after running a fixed number of function 
evaluations, and can also be represented by the average optimization error. For a testing function ( )f x ,
describe the optimization error as Eq. (5): 

min
( ) ( )E f f= − *x x  (5) 

where *( )f x is the given optimal value of the function.  As described in Section 3, for all benchmark 
functions, *( ) 0f x = , then the optimization error E is equal to the fitness function value, thus the search 
accuracy can be represented by the average global optima of the total search runs. 
 

(a)                                                                                (b) 
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(c)                                                                               (d) 
 Figure 2. Convergence curves under different constraint factor 
 

Table 3. Mean best fitness under different  f
Function f=1 f=0.5 f=0.1 f=0.05 f=0.01 f=0.005 

Sphere 2.1838 0.0001 0.0000 0.0000 0.0000 0.0003
Rosenbrock 2386.5743 199.4966 129.0602 119.1987 102.5629 173.839 
Griewank 67.1830 47.5886 46.5106 44.4015 43.9865 43.0154 
Rastrigrin 0.8765 0.01634 0.0139 0.0136 0.0151 0.01480

As seen in Table 3, for function Rastrigrin, when 0.05f = , the best fitness can be obtained. For Sphere 
and Rosenbrock, when 0.01f = , the best fitness comes out, and for Griewank, when 0.005f = , the best 
fitness is obtained. Among all these testing functions, function Sphere is possessed of better search 
accuracy. 

The proportion of optimization successes over 200 runs are listed in Table 4, which shows the 
percentage of times that the algorithm was able to reach the globally optimal region. For the 
optimization, while the fitness is less equal the global error, it is looked as optimization success. This 
measure reveals the expected probability of the algorithm reaching the criteria after a certain runs. If the 
probability is very high, it means that the algorithm is consistently capable of discovering the solution.  
 

Table 4.  Proportion of optimization successes (%) 
Function f=1 f=0.5 f=0.1 f=0.05 f=0.01 f=0.005 

Sphere 0 100 100 100 100 100
Rosenbrock 0 51.5 70 76 68.5 52 
Griewank 95 100 100 100 100 100 
Rastrigrin 0 93.5 93 95.5 95.5 98 

As seen in Table 4, for all testing function, their proportion of optimization successes are the lowest 
when 1f = . For function Sphere, Rosenbrock, and Griewank, the better proportion of optimization 
successes can be obtained when 0.05f = , and for function Rastrigrin, when 0.005f = , the proportion of 
optimization successes is the highest. We can also find from Table 4, for function Sphere, Rosenbrock, 
and Rastrigrin, after 200 runs, the optimizations are not convergent when 1f = .

From the experimental results, it can be seen that the constraint factor f formulated in Eq. (4) has a 
great effects on the performance of the IWPSO, thinking about the measurement indices, 0.05f = is a 
preferred one.   
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5. Conclusion and discussion 
 

Through the comparative experiments, parameter modifying methods to improve the performance of 
the PSO is demonstrated the better balance between the global search ability and the local search ability, 
while making less effect on the algorithm complexity. One of the well-known parameter based 
improving PSO is the inertia weight PSO (IWPSO), with inertia weight linearly decreasing strategy, the 
performance of the original PSO is improved obviously. In this paper, we empirically studied the IWPSO 
with a constraint factor, and the experimental results shown that the factor can obviously affect the 
performance of the original IWPSO. Under a certain conditions (40 populations, 1000 generations 

0.9startw = , 0.4endw = , and 200 runs), and synthetically thinking about the measurement indices, 
constraint factor 0.05f = is a preferred selection, which can provide better convergence speed, search 
accuracy, and proportion of optimization successes for the benchmark testing functions. 

Although the performance of the improved IWPSO by the constraint factor f is superior to the original 
IWPSO, it still can not solve the problems of the premature convergence and falling into a local optimum 
value. For open research, under the enlightenment of the population diversity methods, a variety group 
structure PSO can be constructed by the improved IWPSO to overcome the above problems, and in the 
future works, these improved PSO can be applied for further applications based on PSO algorithm, such 
as image retrieval, mobile robot path planning, etc.  
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