
International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

16

ShAppliT: A Novel Broker-mediated Solution to Generic Application
Sharing in a Cluster of Closed Operating Systems

*1Chen Guo, 2Cenzhe Zhu, 3Teng Tiow Tay
ECE Department, National University of Singapore,

1guochen@nus.edu.sg, 2cenzhe.zhu@nus.edu.sg, 3eletaytt@nus.edu.sg

Abstract. With advances in hardware and networking technologies and mass manufacturing,
the cost of high end hardware had fall dramatically in recent years. However, software cost still
remains high and is the dominant fraction of the overall computing budget. Application sharing
is a promising solution to reduce the overall IT cost. Currently software licenses are still based on
the number of copies installed. An organization can thus reduce the IT cost if the users are able
to remotely access the software that is installed on certain computer servers instead of running
the software on every local computer. In this paper, we propose a generic application sharing
architecture for users’ application sharing in a cluster of closed operating systems such as
Microsoft Windows. We also propose a broker-mediated solution where we allow multiple users
to access a single user software license on a time multiplex basis through a single logged in user.
An application sharing tool called ShAppliT has been introduced and implemented in Microsoft
Windows operating system. We evaluated their performance on CPU usage and memory
consumption when a computer is hosting multiple concurrent shared application sessions.

Keywords: Cluster Computing, Peer to Peer Network, Application Sharing, Remote Access,
Software License, Windows Operating System

1. Introduction

Application sharing is a promising solution to effectively reduce the overall cost of computing. The
greatest benefit of application sharing is that software can be remotely used by the users from their
local computers which may have incompatible operating system and lower processing power required
by the software. This is because the users are not actually running the software on their local
computer, but remotely accessing and controlling the desktop (and therefore the software) of the host
computer. With the use of the application sharing software, it is possible for individuals and
organization to save huge amount of money that they would have spent on purchasing more copies of
software to cater for all of the local computers.

With increasing performance of general purpose computer and high speed communication, cluster
computing is becoming a promising research area. A cluster environment may consist of heterogeneous
operating systems including closed/proprietary operating systems and open source operating systems.
A closed operating system is one where source code is not made available. Users may license the
object code, but is not at liberty to modify or change. Examples of proprietary operating systems are
Windows and Mac OS X. Open source operating systems allow the user to tweak and change.
Examples of open source operating systems are Linux for personal computers and Android for mobile
devices. In the cluster environment, we have kept proprietary operating systems in mind in our design.
We design add-ons to these systems but do not modify the source code at the operating system level.
For example, the client version of Windows is designed to be used by one person at a time and the
terminal service also limits the number of users logged in to one at a time [1]. Two people cannot log
on and access the computer system at the same time even if it includes just a physical, local-console
login and a remote login. How to perform application sharing on such a proprietary operating system is
an important issue to be addressed in our research.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

17

In this paper, we propose a novel application sharing architecture for generic application sharing in
a standard local area network. We provide a broker-mediated solution to extend single user software
license to multiple user usage and resolve the problem of multiple users’ access to proprietary
operating systems. The objectives of our work are achieved through the implementation of a peer-to-
peer application sharing tool called ShAppliT. ShAppliT is a middleware residing on top of the
operating system. It implements a multiple-user and resource management protocol and provides a
single client access to the underlying computer system. Two versions of ShAppliT have been
implemented based on Microsoft Windows operating system. The first implementation, ShAppliT V1.0
achieves the research goal by modifying by Windows and the second implementation, ShAppliT V2.0
by using a broker-mediated solution to support concurrent application sharing sessions. Performance is
evaluated and compared between ShAppliT V1.0 and ShAppliT V2.0 on CPU loading with multiple
concurrent sessions.

This paper is organized as follows. In Section 2, we give an over of the application sharing cluster
system. In Section 3, we describe the two versions of ShAppliT implementation. In Section 4, we
discuss the memory performance of ShAppliT V1.0 and V2.0, licensing issues and some limitations of
current system. In Section 5, we review state of the art application and desktop sharing products and
communication protocols for application sharing. In the last Section, we provide concluding remarks
and challenges for future work.

2. System overview

As shown in Figure 1, each node with ShAppliT in the cluster is called a peer. It can act as an
application provider or/and as an application consumer. All the computers are connected via a high
speed local area network (LAN). Computers with ShAppliT installed form a cluster network within the
LAN to facilitate handshaking, message exchanging and remote desktop connections that are exclusive
for ShAppliT users [2].

Figure 1. Application Sharing Cluster System overview [2]

In our current ShAppliT system, we provide a technique to coordinate multiple users’ assessments

for closed system using a broker-mediated mechanism. As shown in Figure 2, there is a layer on top of
all operating systems for multiple user and resource management. It works as a broker to receive

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

18

request from multiple users and manage the session for each user and only have one access to the
operating system. The operating system, together with the underlying applications and resources fulfill
the broker’s requests. Our application sharing tool acts as the bridge between the clients and the server.
Only one master session logs in to the application server and accesses the host Windows OS via
terminal service. All the tasks are received by the broker from multiple clients, both remote and local
computer users. Therefore, the server sees only one remote desktop session and does work for the
broker only. The broker takes over the responsibility of negotiation with remote clients, forwards the
input events to the server OS and redirects the display data back to the respective clients. In a way it
shares a single-user application among multiple clients via a single log in to that application.

Figure 2. Broker-mediated Application Sharing on Closed Systems [2]

3. Implementation

The application, ShAppliT realizes the proposed peer-to-peer application sharing on closed systems
in a cluster. It is implemented on Windows XP x86 32-bit operating system in a LAN. Unlike Linux
which is a multi-user system designed to handle multiple concurrent users, Windows client systems are
designed to be used by one person at a time [3]. Windows XP is typically used by standalone users
whereas Window Server 2003 is normally deployed as a server operating system built to support
multiple clients concurrently. However, Windows Server 2003 contains complex functionality and is
mainly operated by programmers or administrators and it is many times costlier than XP, which make
Windows Server 2003 not desirable for peer to peer usage. Since Windows XP is a single user
operating system, it is an obstacle to the realization of peer-to-peer application sharing.

ShAppliT is divided into three parts:
• Initialization and management of a cluster
• Incoming and outgoing packet management
• Establishment of multiple remote application sharing sessions

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

19

Operation is as follows. Upon launch, the App Pool Management shown in Figure 3 searches
through the system registry to track all applications installed on the host computer and generates a list.
Subsequently, Sharing Permission Setting component allows the user to configure which application to
be offered for sharing via the Application Pool Management. The component, Cluster Joining
Management handles all the handshaking protocol in the creation/joining of a cluster.

Query Sending Management creates queries for applications. The creation of a query is stored in a
list and is periodically broadcasted by Query Sending Management across the cluster network.

Simultaneously, Request Listening Management has an opened port that listens to requests
broadcasted in the cluster network. All requests received will be stored in a list in Request Listening
Management. Request Listening Management will periodically process the requests in the list by
verifying whether relevant conditions as specified by the users are met. If all conditions are met,
Request Listening Management will broadcast a message containing the information required to
establish a remote desktop session across the network with the requester. Upon receiving this message,
the requester will launch a Remote Desktop Connection using the information contained in the
message.

Figure 3. System architecture of ShAppliT V1.0

3.1. Cluster management

In our first attempt to create a peer-to-peer application sharing cluster, we implemented Microsoft

Peer Name Resolution Protocol (PNRP) as our base protocol [4]. However, the result is not satisfactory
because of an excessive delay in the connection. Therefore, we have implemented a new system using
multicast approach. Multicast packet is addressed using a single identifier for a group of receivers. This
address indirection allows a copy of the packet that is addressed to the group to be delivered to all the
multicast receivers associated with that group.

Classful network as used by multicast is succeeded by classless inter-domain routing. However,
multicasting address is still considered as Class D address. Classless inter-domain routing used
significant bits to represent host and network. For an example, 192.168.0.0/16 means that there are 2^
(32-16) host in the network and they start from 192.168.0.0 to 192.168.255.255. Figure 4 shows a class
D identifier, 234.5.6.7, which is used to associate a group of receivers. This group is referred as a
multicast group. Figure 5 describes the implementation of multicast clustering using Win32 APIs.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

20

Figure 4. Multicast group

Figure 5. Flow chart of joining a multicast group

3.2. Incoming and outgoing packet management

The message passed within the cluster determines the sender, the message type and the application

requested. In the example below, suppose Alice request WinWord from the multicast group. Bob
replies to Alice’s request. Charlie discards Alice’s request because request has been fulfilled by Bob.
We define four message header types:

Type 0: request an application by Alice, example: 0//winword.exe
Type 1: reply a particular request, example:1//Alice_IP//winword.exe//C:\\Program Files\\Microsoft

Office\\winword.exe//guest2
Type 2: handshake between all hosts to notify each other their existence in the cluster
Type 3: graceful disconnection if a host is to leave the cluster
When ShAppliT receive datagram from the network, these packets are stored in the list. There are 3

kind of list:

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

21

A list of all requests by the host
A list of all incoming replies to the request of the host
A list of all incoming requests from other clients
The information in the lists must be unique. This uniqueness can be enforced by using STL

(Standard Template Library) set [5]. Sets are associate containers that store unique elements or keys.
The uniqueness of the structure is enforced by the operator of the structure. A thread is used to process
incoming datagram stored in the set. The methods used are described in Figure 6.

Figure 6. Flow chart for processing datagram in set container

QueryPacket structure: there is no duplicate application name. Example: Alice cannot request
winword.exe twice until the previous request is timed out or is satisfied by other peer in the cluster.

RecReplyPac structure: this structure is used to store replies of all the requests made. The
uniqueness of the structure is enforced by “a peer does not satisfy any request twice”. Example: Alice
will not store the reply packet on winword.exe from Bob twice.

KeyValueRec structure: this structure is used to process incoming request packets. It stores a
temporary list for later processing. This structure’s uniqueness is enforced by “the same IP should not
associate to the same application”. Example: Bob receives Alice request on winword.exe and
powerpnt.exe, Bob should not receive Alice’s request on winword.exe twice.

Figure 7 shows C++ codes for message structures used to store the receiving packets from the
cluster.

typedef struct _RecReplyPac{
wstring strAppName;
wstring strIpv4;
wstring strFullPathName;
wstring strUsername;
bool operator<(const _RecReplyPac& A) const
{
return (strIpv4.compare(A.strIpv4) < 0 &&
strAppName.compare(A.strAppName) < 0);
}

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

22

}RecReplyPac;
typedef struct _QueryPacket{
SYSTEMTIME systemTime;
wstring strAppName;
bool operator<(const _QueryPacket& A) const
{
return (strAppName.compare(A.strAppName) < 0);
}
}QueryPacket;
typedef struct _KeyValueRec{
wstring strIpv4;
wstring strAppName;
bool operator<(const _KeyValueRec& A) const
{
return (strIpv4.compare(A.strIpv4) <0) ^
(strAppName.compare(A.strAppName) < 0);
}
}KeyValueRec;

Figure 7. C++ codes of message structures used to store the receiving packet from the cluster

3.3. Establish remote application sessions

3.3.1. ShAppliT V1.0

ShAppliT V1.0 supports remote application sessions concurrently by making modifications on
terminal service (TS) DLL file and the registry of Windows XP as described in references [6] and [7].
The changes may violate the license stated by Microsoft. Our main goal is to demonstrate the
feasibility and research on the future development of peer-to-peer clustering concept. In this case,
Windows terminal service server manages the connections sessions directly such that no broker is
needed for exchange of information between server and client.

3.3.2. ShAppliT V2.0

With ShAppliT V2.0 using the broker-mediated method of establishing multiple remote application
sessions, we provide a broker-mediated solution to extend single user software license for multiple-user
usage and solve the problem of working on closed or proprietary operating systems.

Instead of managing multiple connections using Windows terminal service server, we implement
ShAppliT V2.0 Server which sits in between the ShAppliT V2.0 client and Windows TS server as a
broker. It handles tasks from multiple clients and passes them to the TS server. Therefore, TS server
sees only one Remote Desktop Protocol (RDP) session and does work for the ShAppliT Server only.
And ShAppliT Server takes over the responsibility of negotiation with remote clients, forwards the
input events to TS server and redirects the display data back to the respective clients. Figure 8 shows
the detailed programming model of ShAppliT V2.0.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

23

Figure 8. Programming model of ShAppliT V2.0 system

Master mode is the default mode of ShAppliT Client. When run in master mode, ShAppliT Client
creates and listens on a master socket. After creation of a remote user session with a ShAppliT Server
and maintenance of that connection, ShAppliT Client listens on the master socket and checks master
socket each time when TCP layer receives packets.

When run in slave mode, ShAppliT Client notifies the master Client instance of a new command to
be run by sending command (e.g. "mspaint") to the master socket and then exits. The master instance
detects a command from a client and sends a client-to-server message (e.g. "spawn, mspaint") to the
ShAppliT Server. The message will be directed to SeamlessApp server component at the Windows
server, which runs the new command on the server machine. Finally, a remote application is launched
at the Windows server and the application Graphic User Interface (GUI) will be received by ShAppliT
Client. Moreover, we can use the slave mode multiple times to send more application commands. So, it
provides connection sharing by allowing a single ShAppliT connection to launch multiple applications.

There are two components in the ShAppliT Server V2.0, namely the Session Manager and Data
Stream Controller. The session manager component first establishes an RDP connection with Microsoft
Terminal Service Server. Then, it listens on TCP port 5000 and accepts connections from remote
clients. It creates new user sessions for remote clients after successful connection negotiation. The
connection sequence follows the RDP connection sequence mentioned in MS-RDPBCGR [8]. After a
new user session is created, a new client is added to the data stream controller for starting additional
application. Data stream controller is in charge of multiplexing and de-multiplexing the clients' and
server's traffic. It maintains the smooth execution of multiple remote user sessions of ShAppliT V2.0
system.

There are three major programming modules inside data stream controller, namely the scheduler,
MUX and DEMUX. There are two important control signals: Allocated Client: Client ID and Focused
Window: Win ID. Each client has at most one focused window. Data stream controller keeps track of
the focused window for each client. According to the allocated client information determined by the

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

24

scheduler, data stream controller sends over the focus window information to TS Server then followed
by the client's input events. Our current scheduler uses a round-robin scheduling algorithm. Clients'
input events are queued in a buffer of each client respectively. The scheduler assigns time slices to each
client in equal portions and in circular order. The next client will be allocated after the timer expired.
Allocated client is the control signal for the steam multiplexer and de-multiplexer. At a time only one
client is enabled to transmit its input events and to receive the graphic updates from server. The
allocated client is determined by a scheduler. Clients' input events in the global channel including the
keyboard and mouse inputs are buffered in an event queue of each client respectively.

Figure 9 illustrates the relationship of focused window and allocated client at both client and server
sides. Each client may have one or more applications running from the same sever, but at a time there
is only one window focused by the client. A focused window is the window the client is operating on
currently. So, at the client side each client will have at most one window focused shown with filled
colour box. At the sever side, only one window is focused each time shown with filled colour box.
Therefore, it is important to keep track of the focused window ID for each client. Allocated client is
decided by the scheduler according to the scheduling algorithm as mentioned earlier. When it comes to
a client's turn to send over its events the server will be notified about the current focused window by
our ShAppliT Server. Then the TS server will perform operations on the focused window of the
allocated client according to the input events received and send the server output graphic update data
over to the allocated client.

Figure 9. Illustration of focused window and allocated client

Focused window information is extracted from the network packet flow of the seamless virtual

channel in RDP as mentioned in the previous section. The seamless channel ID is determined by the
negotiation between client and server during the RDP connection sequence. Focused window
information is carried in the seamless virtualChannelData field with the format "focus, win ID, flags".
The seamless channel data is directed by the TS server to the SeamlessApp Server endpoint for further
process.

4. Results and discussion

4.1. Multi-session load analysis

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

25

Our test bed is set up in a LAN consisting of ten computers with ShAppliT and identical system
environment configurations. All PCs are Pentium 4 3.0GHz machines with 512MB physical memory
running Windows XP professional SP3. The performance evaluation is mainly focused on describing
the impact of increasing the number of remote application sessions on the memory consumption of a
host computer running ShAppliT. The load analysis shows that additional remote connection results in
a linear increase of the commit charges on host computer. A comparison of memory performance is
made between ShAppliT V1.0 and ShAppliT V2.0. ShAppliT V2.0 consumes less commit charges on
host computer. Furthermore, lawful issue of sharing licensed applications is solved in ShAppliT V2.0.
We will further discuss this in session 4.2.

In the experiment, we test on a single host machine running multiple remote application sessions of
WordPad.exe. This analysis helps us evaluate the memory performance of the computer and determine
the maximum concurrent session to be accepted on the machine. This testing is conducted using a host
computer with ShAppliT V1.0 or ShAppliT V2.0 installed and deployed. The performance data is
obtained using the performance analysis tool implemented in Windows Task Manager. Table 1 below
gives an overview on detailed performance analysis of Windows Task Manager.

Table 1. Details on Windows Task Manager Performance analysis [9]

Parameter Details

Commit
Charge

Amount of virtual memory reserved by the operating system for the process.
Memory allocated to programs and the operating system. Because of memory copied
to the paging file, called virtual memory, the value listed under Peak may exceed the
maximum physical memory. The value for Total is the same as that depicted in the
Page File Usage History graph.

Physical
Memory

The total physical memory, also called RAM, installed on your
computer. Available represents the amount of free memory that is available for use.
The System Cache shows the current physical memory used to map pages of open
files.

Kernel
Memory

Memory used by the operating system kernel and device drivers. The paged is
memory that can be copied to the paging file, thereby freeing the physical memory.
The physical memory can then be used by the operating system. Non-paged is
memory that remains resident in physical memory and will not be copied out to the
paging file.

We have used a control session as a reference whereby the data is captured when no remote session
is taking place. The data is being recorded every time an additional remote session is launched from a
client computer and the result is shown in Table 2 and Table 3.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

26

Table 2. Multi-session load analysis on host computer with ShAppliT V1.0
No. of

remote
sessions

Total
physical
memory(KB)

Available
physical
memory(KB)

Total
kernel
memory(KB)

Paged
kernel
memory(KB)

Total
commit
charge(KB)

0 514116 318056 37864 27276 248176
1 514116 278588 42312 31420 268272
2 514116 269660 44660 33600 285812
3 514116 260704 47076 35876 300284
4 514116 252144 49412 38056 314888
5 514116 261168 51440 40036 318972
6 514116 252172 53752 42188 343584
7 514116 236348 55448 43768 358156
8 514116 227700 57600 45776 372684
9 514116 220752 59864 47896 388188

Table 3. Multi-session load analysis on host computer with ShAppliT V2.0
No. of

remote
sessions

Total
physical
memory(KB)

Available
physical
memory(KB)

Total
kernel
memory(KB)

Paged
kernel
memory(KB)

Total
commit
charge(KB)

0 514116 318056 37864 27276 248176
1 514116 308092 38112 27524 249012
2 514116 306060 38244 27656 251132
3 514116 305416 38388 27800 251932
4 514116 303880 38532 27944 254080
5 514116 302248 38712 28124 255744
6 514116 300976 38868 28280 257356
7 514116 308312 39020 28432 258932
8 514116 308716 39172 28584 260468
9 514116 307864 39324 28736 261856

The load analysis of ShAppliT V1.0 (Figure 10) shows that additional remote connection results is a
linear increase of the commit charge on the host computer. And the physical memory at the host
computer decreases with increasing number of multiple remote sessions. As such, it is necessary to set
a limit on the maximum number of concurrent sessions so that the host computer would not be
burdened by excessive remote connections and experience laggings in the local session. This result also
highlights that although this system provides certain degree of scalability but further performance
optimization on memory consumption still need to be done.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

27

Figure 10. Memory performance of ShAppliT V1.0 when hosting multiple remote sessions

The load analysis of ShAppliT V2.0 (Figure 11) shows that additional remote connection results in

a linear increase of the commit charge on host computer. The increment of commit charge is very small
with increasing number of concurrent remote sessions. In addition, the available physical memory of
the host computer is affected very little by the multiple remote sessions.

Figure 11. Memory performance of ShAppliT V2.0 when hosting multiple remote sessions [2]

Memory management is more effective in ShAppliT V2.0 compared to ShAppliT V1.0 observed
from Figure 12 below. This is because in ShAppliT V2.0 there is only one RDP connection established
and maintained by ShAppliT Server. Each additional application launched at host computer is invoked
by SeamlessApp server in the same way as using cmd.exe at host computer. As a result, starting a new
application session, the operating system only allocates the necessary memory resource to the
application process running within the same user. While, in ShAppliT V1.0 multiple remote

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

28

connections are made to Windows TS server directly and multiple RDP sessions are established. Each
time any new request of application from client, the host computer launches an additional RDP session
for the application. Therefore, the operating system reserves the memory for multiple RDP sessions in
ShAppliT V1.0, which consumes much more memory than within one RDP connection session.

Figure 12. Comparison between ShAppliT V1.0 and ShAppliT V2.0 on commit charge when
hosting multiple remote sessions

4.2. License issue on application sharing

In our ShAppliT V1.0 system there is a legal issue associated with the software license. Most of the
software installed in personal computers have a single user software license and cannot be transferred
from one user to another. For example Microsoft office edition 2007 says the single primary user of a
licensed device may access and use the software installed on the licensed device. Single user may use
remote access technologies, such as the Remote Desktop features in Microsoft Windows or
NetMeeting, to access and use the licensed copy of the Software, provided that only the primary user of
the device hosting the remote desktop session accesses and uses the Software with a remote access
device [9].

The single user licensing problem of application sharing is solved in our current approach ShAppliT
V2.0 by establishing one RDP connection for multiple clients. The ShAppliT Server sits in between the
ShAppliT client and TS server as a broker. It logs in to the host operating system via RDP, handles
tasks from multiple clients, including the local user sitting in front of the computer and passes them to
the TS server. Therefore, TS server sees only one RDP session and it feels that it works for the broker
only. And the broker is in charge of connecting to TS Server, creating remote user sessions and
multiplexing/de-multiplexing the data streams. So, when a client want to launch a remote application
from the server, the application will be open at the server under the same user account which is the one
established by the broker. Therefore, with our application sharing tool ShAppliT, as long as there is
one user license for the software, it can be shared among multiple clients without violating any
licensing terms.

Furthermore, the client version of Microsoft Windows operating system (e.g. Windows XP
Professional, Windows 7) terminal service limits the number of users logged in to one at a time. Two
people cannot be logged on at the same time even if it includes just a physical, local-console login and
a remote login. It has to be one or the other and only one user at a time. In ShAppliT V1.0, we modify
the DLL of terminal service to allow multiple users logging in. The changes may violate the license

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

29

stated by Microsoft. In ShAppliT V2.0 system, we only have one master user login by ShAppliT
Server (broker). So, the problem of the closed system limitation on single user logged-in session is not
an issue for broker mediated application sharing system.

4.3. Some limitations of ShAppliT V2.0

In our current implementation of application sharing cluster, we choose Windows OS as our
implementation platform. However, in a cluster environment the operating systems are heterogeneous
in general. More implementation and performance testing should be done on other closed systems as
well, for example Mac OS. We also assume all users are honest and trustworthy and therefore security
management is not considered at user level in our current design. Furthermore, reliable service is not
guaranteed as peers can fail or shut down at any time. Fault recovery mechanism will be done in our
future work. Finally, resource management needs to be improved. Finally, requested resources are
allocated to a user when the first response is received from the cluster. Matchmaking and load
balancing need to be applied for better resource utilization.

5. Related works

5.1. Application and desktop sharing products

Application and desktop sharing enables remote administration, group collaboration, remote trouble
shooting, e-learning, and software tutoring and so on [11]. In the market, many remote control and
desktop sharing solutions are available. The application sharing products use similar technology and
concept to implement. Microsoft has Windows Meeting Space for Windows Vista and Netmeeting for
Windows XP. Netmeeting was released in 1999 for Windows 98; in our tests it fails to display pop-ups
and menus. Windows Vista introduces an application sharing feature as part of Windows Meeting
Space, but all the attendees must use Windows Vista.VNC [12] is a cross-platform open source desktop
sharing system but it supports only screen sharing. VNC supports multiple users but it lacks a floor
control protocol. VNC uses a client-pull based transmission mechanism which performs poorly
compared with server-push based transmissions under high round-trip time (RTT). SharedAppVnc [13]
supports true application sharing, but the delay is on the order of seconds. It uses a loss codec and does
not support multicast. TeleTeachingTool [14] and MAST [15] use multicast in order to build a scalable
sharing system. TeleTeachingTool is developed just for online teaching so it does not allow
participants to use the shared desktop. Also, it does not support real application sharing. MAST allows
remote users to participate via their keyboard and mouse but its screen capture model is based on
polling the screen which is very primitive and not comparable to current state of art the capturing
methods like mirror drivers. BASS [11] is an application and desktop sharing platform which allows
two or more people to collaborate on a single document, drawing or project in real-time. But when one
user manipulates the application via keyboard and mouse events, other users receive the screen updates
simultaneously. It does not support real application sharing.

5.2. Communication protocols for application sharing

There are many communication protocols defined by different vendors or organizations, such as

RFB (Remote Frame Buffer) for VNC, RDP for Windows Terminal Service, and ITU-T T.128 [16] for
NetMeeting and SunForum [17]. In general, most remote desktop protocols are similar in term of the
functionality they offer. However, these protocols can be differentiated by the way the implementation
of system layer where all the redirection of graphical output and user input take place. This is also the
key component that determines the speed and quality of a remote desktop protocol. Some protocols
compress the graphical images for transmission while other uses kernel level driver for transmission.

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

30

There were two ways to implement application sharing systems. The difference is the transmission of
screen contents or drawing commands [17]. In the following section, we will study VNC protocol and
RDP protocol to identify the key differences that separate them.

Virtual Network Computing (VPN) was originally developed by at the Olivetti Research Laboratory
in Cambridge, United Kingdom [18]. It is a graphical sharing system that uses RFB protocols. Many
VNC source code available nowadays are open sources under the GNU General Public License. The
most popular implementations of VNC available in the market are RealVNC and UltraVNC. In shorts,
RFB is a simple protocol for remote access to graphical user interface that function at the frame buffer
level [19]. Therefore, it is highly versatile and applicable to applications and systems across different
platforms and operating systems. As for the display side of the protocol, a low level primitive graphics
concept has been applied. The data containing the graphical display information at the pixel level such
as coordinate and image block of a particular group of pixels are compressed and transmitted regularly
from the server to the client. In another words, the update of a display screen consists of a series of
frame buffer updates that refresh the display screen block by block. The way this concept works is
similar to how video frames refresh.

On the other hand, RDP is an extension of the ITU-T.128 application sharing protocol developed by
Microsoft [20]. Basic connectivity and graphics remoting is designed to facilitate user interaction with
a remote computer system by transferring graphics display information from the remote computer to
the user and transporting input commands from the user to the remote computer, where the input
commands are replayed on the remote computer. RDP also provides an extensible transport mechanism
which allows specialized communication to take place between components on the user computer and
components running on the remote computer. This proprietary protocol provides a mean to access the
graphical interface of a remote host computer. Similar to other remote desktop applications, the
processing of a running application is being done in the host computer, only the graphical presentation
of the desktop is being transmitted to the client. However, as compared to VNC, RDP provides a faster
remote access speed [21]. This is due to the fact that RDP hooks deeper into Windows API to optimize
the information required by the client to construct the display screen. For example, while VNC is
transmitting blocks of bitmap for the client to construct a display screen of a text document, RDP
transmits the texts in the document itself for the client to render a display screen.

6. Conclusion and future work

We have developed a novel P2P application sharing system ShAppliT in a cluster which supports
generic application sharing and concurrent multiple sharing sessions. The proposed architecture is a
clever blend of cluster computing and peer-to-peer concepts. ShAppliT enables client remote access
application resources that are not installed on the local computer. Also, a peer can host multiple
remotely access sessions without any interference for his own experience. We provide a broker-
mediated solution to extend a single user licensed software resource for multiple user usage without
modifying the operating system in ShAppliT V2.0. Experiments also show that our application sharing
system has good usability, scalability and a friendly user interface. Our broker-mediated system
architecture has wide applicability on other closed systems.

Future research works are able to be carried out on security management, reliability and resource
management for P2P application sharing in a cluster environment. User identification, data encryption
algorithms and incentive mechanisms are ways to prevent free-riding and promote cooperation across
distrustful peers [22]. In addition, a successful application sharing system should also provide reliable
services. Peers can build up coordinated checkpoints [23] for fault recovery and establish redundant
links across the peers in case of network failures. So, process at the failed peer can be migrated to a
peer with redundant resource for fault tolerance. Resource management plays a critical rule in P2P
application sharing. The research problem for resource discovery is matchmaking [24] that locates
resources subject to certain constraints. Load balancing can be applied for better resource utilization
[25]. Experiments will be done to evaluate the local user latency. Local user should experience fixed

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

31

low latency when sharing with multiple remote sessions. When the number of remote sessions
increases, the latency should at the beginning increases slowly and then keep at a certain constant
acceptable value or fixed value. The value need to be calculated using a scheduling algorithm [26] and
adjusted by the scheduler.

7. References

[1] Technical Overview of Windows Server 2003 Terminal Services, Microsoft Corporation.

Retrieved 4 Jun 2012, from
http://www.microsoft.com/windowsserver2003/techinfo/overview/termserv.mspx

[2] Chen Guo, Cenzhe Zhu and Teng Tiow Tay, “Sharing of Generic Single-user Application without
Interference in a Cluster”, The 2012 International Conference on Software and Computer
Applications (ICSCA 2012), IACSIT Press, Jun 2012 Singapore.

[3] Chapter 1: Functional Comparison of UNIX and Windows. Retrieved 10 May, 2012, from
http://technet.microsoft.com/en-us/library/bb496993.aspx

[4] Kurose, K. W. Computer Networking: A Top-down Approach. Pearson.
[5] Cplusplus.com. Retrieved 4 Jun 2012, from http://www.cplusplus.com/reference/stl/set/
[6] Enabling Multiple Remote Desktop Sessions in Windows XP,

fawzi.wordpress.com/2008/02/09/enabling-multiple-remote-desktop-sessions-in-windows-xp/
[7] How to Enable Multiple Remote Desktop Sessions on XP or Vista,

remotedesktoprdp.com/Multiple-Remote-Desktop-Sessions.aspx
[8] MSDN. MS-RDPBCGR. Retrieved 4 Jun 2012, from Remote Desktop Protocol: Basic

Connectivity and Graphics Remoting Specification: http://msdn.microsoft.com/en-
us/library/cc240445(v=prot.10).aspx

[9] Task Manager Overview. Retrieved 4 Jun 2012, from Windows XP Professional Product
Documentation: http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/taskman_whats_there_w.mspx?mfr=true

[10] License Terms. Retrieved 4 Jun 2012, from Microsoft:
www.microsoft.com/About/Legal/EN/US/IntellectualProperty/UseTerms/Default.aspx

[11] Omer, B., Henning, S. “BASS Application Sharing System”, In: 10th IEEE International
Symposium on Multimedia, 2008.

[12] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network computing”,
IEEE Internet Computing, 1998.

[13] G. Wallace and K. Li, “Virtually shared displays and user input devices”, In USENIX Annual
Technical Conference, 2007.

[14] P. Ziewer and H. Seidl, “Transparent TeleTeaching”, In ASCILITE, pages 749–758. Auckland,
New Zealand, 2002.

[15] G. Lewis, S. M. Hasan, V. N. Alexandrov, and M. T. Dove, “Facilitating collaboration and
application sharing with MAST and the access grid development infrastructures”, In E-SCIENCE,
2006.

[16] ITU-T T.128, Retrieved 4 Jun 2012, from http://www.itu.int/rec/recommendation.asp
[17] Hui-Chieh, L., Yen-Ping, C., Ruey-Kai, S., & Win-Tsung, L., “A Generic Application Sharing

Architecture Based on Message-Oriented Middleware Platform”, In Proceedings of the 10th
International Conference on Computer Supported Cooperative Work in Design. IEEE, 2006.

[18] The VNC family of Remote Control Applications. Retrieved 4 June, 2012, from
http://ipinfo.info/html/vnc_remote_control.php

[19] Richardson, T, the RFB Protocol, RealVNC Ltd, 2009.
[20] MSDN. The T.120 Standard. Retrieved 4 June 2012, from http://msdn.microsoft.com/en-

us/library/ms709084(VS.85).aspx
[21] MSDN. Remote Desktop Protocol. Retrieved 4 Jun 2012, from http://msdn.microsoft.com/en-

us/library/cc240446(v=PROT.10).aspx

International Journal of
Soft Computing And Software Engineering (JSCSE)
e-ISSN: 2251-7545
Vol.2,No.6, 2012
Published online: Jun 17, 2012

DOI: 10.7321/jscse.v2.n6.2

32

[22] Han Zhao, Xinxin Liu, Xiaolin Li, “A taxonomy of peer-to-peer desktop grid paradigms”, Cluster
Computing, v.14 n.2, p.129-144, June 2011.

[23] Ni, L., Harwood, A., & Stuckey, P., “Realizing the e-science desktop peer using a peer-to-peer
distributed virtual machine middleware”, In: Proceedings of the 4th international workshop on
Middleware for grid computing (MCG '06), USA, 2006.

[24] Kim, J.-S., Nam, B., Marsh, M., Keleher, P., Bhattacharjee, B., Richardson, D., Wellnitz, D.,
Sussman, A., “Creating a robust Desktop Grid using peer-to-peer services”, In: Proc. of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS'07), pp. 1-7, Long Beach,
CA, USA, 2007.

[25] Farrukh Arslan, "Service Oriented Paradigm for Massive Multiplayer Online Games",
International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 2, No. 5, pp. 35-
47, 2012, Doi: 10.7321/jscse.v2.n5.4

[26] Yongbo Jiang, Zhiliang Qiu, Jian Zhang, Jun Li, "Integration of Unicast and Multicast Scheduling
in Input-Queued Packet Switches with High Scalability", International Journal of Soft Computing
and Software Engineering [JSCSE], Vol. 2, No. 4, pp. 14-34, 2012, Doi: 10.7321/jscse.v2.n4.2

