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Abstract. This research describes the initial effort of building a prediction model for defects in 
system testing carried out by an independent testing team. The motivation to have such defect 
prediction model is to serve as early quality indicator of the software entering system testing and 
assist the testing team to manage and control test execution activities. Metrics collected from 
prior phases to system testing are identified and analyzed to determine the potential predictors 
for building the model. The selected metrics are then put into regression analysis to generate 
several mathematical equations. Mathematical equation that has p-value of less than 0.05 with R-
squared and R-squared (adjusted) more than 90% is selected as the desired prediction model for 
system testing defects. This model is verified using new projects to confirm that it is fit for actual 
implementation. 
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1. Introduction 
 

As independent testing team, it is important to plan and manage the test execution activities in order 
to meet the tight deadline for releasing the software to end-users. Since the aim of test execution is to 
discover as many defects as possible, testing team is usually put into burden to ensure all defects are 
found and fixed by the developers within the system testing phase. Additional number of days has to be 
added to the timeline to accommodate testing team in completing their test with the hope that all 
defects have been found and fixed. On the other hand, the stakeholders would also ask the testing team 
on the forecasted defects in the software so that they could decide whether the software is feasible and 
fit for release. This is due to the nature that system testing is the last gate before the software is made 
visible to end-users, thus as the custodian of executing system testing, the independent testing team has 
to take responsibility to ensure software to be released is of high quality. 

Therefore, the ability to predict how many defects that can be found at the start of system testing 
shall be a good way to tackle this issue. This becomes the reason for conducting this study. Besides 
serving as a target on how many defects to capture in system testing, defect prediction can also become 
an early quality indicator for any software entering the testing phase. Testing team can use the 
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predicted defects to plan, manage and control test execution activities. This could be in the form 
aligning the test execution time and number of test engineers assigned to particular testing project. 
Having defect prediction as part of the testing process allows testing team to strengthen their test 
strategies by adding more exploratory testing and user experience testing to ensure known defects are 
not escaped and re-introduced to end-users. Test engineers would be able to have better root cause 
analysis of the defects found. In the long run, testing can achieve what is called as zero-known post 
release defects for that particular software. 

This research is driven towards achieving several objectives as follows: 
• To analyse existing metrics, techniques and approaches used in building prediction model for 

system testing defects  
• To analyse the metrics in prior phases to testing that could be used for predicting defects in 

system testing  
• To formulate prediction model for system testing defects using statistical approach based on 

metrics in prior phases to system testing  
• To evaluate the accuracy of proposed prediction model based on acceptable criteria for final 

selection of defect prediction model for system testing 
 
2. Related Works 
 

Software defect prediction is not a new thing in software engineering domain. Various related 
studies and approaches have been conducted to come out with the right defect prediction model. 
Understanding what defect really means is important so that the term is not confused with error, 
mistake or failure. In the event when the software or system fails to perform its desired 
function, it means that defects have taken place [1].  Defect is also observed as the deviation 
from its specification [2] as well as any imperfection related to software itself and its related 
work product [3]. Therefore, anything that is not according to specification for software and its 
work product is referred as defect. Knowing what defect means is not enough since in building 
the prediction model for defects, it is essential to know how defects are introduced as part of 
verification and validation (V&V) activities [3]. 

Predicting defects is the proactive process of characterizing many types of defects found in 
software’s content, design and codes in producing high quality product [4]. [2] presented that 
size and complexity metrics are among the earlier approaches to defect prediction. Lines of 
code (LOC) and McCabe’s cyclomatic complexity were used to predict defects in software. Two 
of the equations presented were as follows: 

Defect = 4.86 + 0.018 Lines of Code 
Defect = 4.2 + 0.0015 Lines of Code 4/3 

[2] also added that defects can also be predicted based on defect per life cycle prediction and defect 
found per testing approach. Apart from that, [3] categorized the techniques for predicting defects into 
three areas: project management, work product assessment and process improvement such as defect 
discovery profile, fault proneness evaluation, orthogonal defect classification and empirical defect 
prediction. 

Rayleigh model was also used to predict defect density for different phases of project life cycle [5]. 
[6] constructed the model to predict defects using product and project metrics collected from design 
review, code testing, code peer review as well as product release usage and defect validation. Linear 
regression was applied to these metrics via product metrics only, project metrics only and both. As the 
result, linear regression using both product and project metrics provided better correlation between 
defects and the predictors. At the same time, it demonstrated the feasibility of using regression analysis 
to build defect prediction model. An approach was carried out to predict defects using mathematical 
distributions that serve as quality prediction model [7]. Further investigation was performed to predict 
which part of large multi-release industrial software system contains the highest defects in the next 
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release. Result of the investigation stated that important factor for the prediction and its impact to the 
model quality is development information which focuses on three metrics: number of developers who 
modified the file during the prior release; the number of new developers who modified the file during 
the prior release; and the cumulative number of distinct developers who modified the file during all 
releases through the prior release [8]. 

There was also study to investigate on how to defect fault-proneness in the source code of the open 
source Web and e-mail suite called Mozilla. It used object-oriented metrics proposed by Chidamber 
and Kemerer to conduct the investigation [9]. On the other hand, [10] proposed several inputs to 
simulate the system test phase, in which those inputs could be considered as potential predictors to 
build defect prediction model. Another approach to defect prediction was based on simple Bayesian 
Network in a form of Defect Type Model (DTM) that predicts defects based on severity minor, major 
and minor [11]. Multivariate linear regression was used by [12] to come out with defect inflow 
prediction for large software projects either short-term defect inflow prediction or long-term defect 
inflow prediction.  

[13] applied statistical approach in Six Sigma methodology to predict defect density. In this case, 
statistical method was used against the function point as the base metrics to predict defect density 
before releasing software to production. Defect prediction can also be observed from different 
perspective which is by predicting remaining total number of defects while the testing activities are still 
on-going [14], which is called as defect decay model. This model depends on on-going test execution 
data instead of historical data. [15] presented the case studies on building and using the defect 
prediction model in assisting their organization to assess testing effectiveness and predict the quantity 
of post release defects and enables quantitative decision about production go-live readiness. Their 
model was mainly focused on predicting defects in acceptance test or production which involves 
estimating total potential defects based on defined detailed requirements, applying defect removal 
efficiency and finally estimating the defects per phase as well as post release defects. The model 
implementation demonstrated a 1% defect removal efficiency improvement which equals to $20,000. 
However, if historical data is not available, having defect prediction would be difficult. Sample-based 
defect prediction was proposed to overcome this difficulty by using a small sample of modules to 
construct cost-effective defect prediction models for large scale systems, in which CoForest, a semi-
supervised learning method was applied [16]. Knowing that defect prediction could optimize testing 
resources allocation, [17] conducted a feasibility study on predicting defects of cross-project when 
historical data is not in place. The results demonstrated that training data is very important for machine 
learning based defect prediction provided that the data is carefully selected from the projects. As an 
evidence, defects in 18 out of 34 cases from the study were predicted at a Recall greater than 70% and 
a Precision greater than 50%. 

In building defect prediction model, it is essential to couple it with the mechanism to measure its 
success. [18] proposed to measure the percent of faults found in the identified files as one of the ways 
to assess the effectiveness of the prediction models. Besides that, the model is said to be a good model 
if it can assist in planning the resource for maintenance as well as in the area of software insurance 
towards coming out with software insurance system [19]. However, it is hard to find an established 
benchmark specific for defect prediction. An effort was taken by providing an extensive comparison of 
well-known bug prediction approaches, together with novel approaches using publicly available dataset 
consisting of several software systems [20]. The findings showed that there is still a problem with 
regard to external validity in defect prediction. It requires larger shared data set towards having a 
significant benchmark of defect prediction. 
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Looking at these related works, there is an opportunity to explore in the area of defect prediction 
model specific for system testing by applying existing proven technique, which is regression analysis 
to develop such model. 
 
3. Data Requirement and Collection 
 

An independent testing team from a research organization has been identified as the source of data. 
Therefore, the data collected for this research is subjected to metrics being captured, tracked and 
analyzed in their day-to-day software development activities. Looking at this constraint, the data may 
not be as extensive as those presented in other related works.  

The data collected is based on the software development using V-shape development model which 
is used by the organization in developing and releasing the software. Implementation of V-shaped 
development model demonstrates rigor verification and validation activities that involvers proper 
collection of metrics in requirement and design review, test plan and test cases review, code inspection 
and unit testing, as well as the system testing itself. Looking at the requirement of this research which 
is to formulate a model to predict defects in system testing, therefore the factors should come from 
metrics collected in phases prior to system testing. As for the type of software which data is collected, 
it comprises of web-based and component-based developed in Java, PHP or Hypertext Preprocessor 
and .NET. The factors are categorized to several areas as outlined in Table 1 below: 

 
Table 1. Possible factors to defect prediction 

Area Factors 
Software complexity Number of requirement pages 

Number of design pages 
Type of programming language 

Code size 
Knowledge Developer knowledge 

Tester knowledge 
Test process Test case coverage 

Total test cases 
Test automation rate 

Test case execution productivity 
Total effort in test case design 

Total effort in phases prior to system testing 
Errors Requirement error 

Design error 
Code error 

Test plan error 
Test cases error 

Fault Requirement fault 
Design fault 
Code fault 

Integration fault 
Test cases fault 

Defect Severity of defect 
Type/category of defect 

Validity of defect 
Total defects logged 

Type of software Component-based 
Web-based 
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Error in Table 1 means defect found within the same phase, defect means those captured within system 
testing while fault is the result of error plus defect. 

 
After brainstorming activities, following factors were considered for further analysis in which the 

metrics were collected and analyzed: 
• Number of requirement pages 
• Number of design pages 
• Code size in a form of lines of code 
• Total test cases 
• Total effort in test case design 
• Total effort in phases prior to system testing 
• Requirement error 
• Design error 
• Code error 
• Test cases error 
• Total defects logged in a form of all defects and functional defects 

 
The data set collected is presented below in Table 2 after went through filtering process: 
 

Table 2. Data set for regression analysis 

4. Findings and Discussion 
 

This solution on using regression analysis in building prediction model for system testing is selected 
as the suitable approach since multiple factors affecting the discovery of defects in system testing can 
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be analyzed and the relationship between these factors can be observed. This means significant factors 
that have impact to defects in system testing can be seen and identified clearly. As regression analysis 
is selected as the technique to construct the defect prediction model for system testing, three criteria are 
used to evaluate the outcome of the analysis: 

• P-value – It determines the significance of the predictors to the discovery of functional 
defects. P-value must be less than 0.05 

• R-Squared (R-Sq) –It is the amount of variation explained by the regression equation which 
is used to predict future outcomes on the basis of other related information. It is a statistical 
term saying how good the particular generated equation is at predicting functional defects.  
R-Sq. value must be above 85% 

• R-Squared adjusted (R-Sq (adj.)) –It is a modification of r-squared used in regression and 
multiple regression to compare models with different number of explanatory terms. R-Sq. 
(adj.) must  be greater than 85% 

 

Since defects data collected consist  of all defects and functional defects while the effort data 
comprises of effort in test design and effort in all phases prior to system testing, four rounds of 
regression analysis were performed to cater for these metrics. The kilo lines of code (KLOC) metric 
were kept as permanent metric in the regression. The results are presented below in Figure 1, Figure 2, 
Figure 3 and Figure 4: 
 

Figure 1.Result 1 (Target: Functional Defects; Predictors: Requirement Error, Coding Error,   
 KLOC, Requirement Pages, Design Pages, Total Test Cases, Total Effort Days) 
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Figure 2. Result 2 (Target: All Defects; Predictors: Requirement Error, Coding Error,  
 KLOC, Requirement Pages, Design Pages, Total Test Cases, Total Effort Days) 

 

Figure 3. Result 3 (Target: Functional Defects; Predictors: Requirement Error, Coding Error, KLOC,  
 Requirement Pages, Design Pages, Total Test Cases, Total Effort Days in Test Design) 
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Figure 4. Result 4 (Target: All Defects; Predictors: Requirement Error, Coding Error, KLOC,  
 Requirement Pages, Design Pages, Total Test Cases, Total Effort Days in Test Design) 

 

Figure 5. Residual plot for Result 1 
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Figure 6. Residual plot for Result 2 

Figure 7. Residual plot for Result 3 
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Figure 8. Residual plot for Result 4 

 
Based on all four results as represented from Figure 1 to Figure 8, all values of P-value for each 
predictor are less than 0.05 while all values for R-Sq. and R-Sq. (adj.) are greater than 85%. Therefore, 
it is difficult to select which regression equation is the right one. 

To overcome this, each equation was applied to three new projects which are not part of the data set 
used to run the regression. This verification activity used Prediction Interval (PI) generated for each 
new prediction of each new project as the reference to measure the prediction. PI serves as the 
minimum and maximum range of prediction in which the predicted defects must fall into. Results of 
the verification for each new project are presented below in Table 3: 

 
Table 3. Verification results 
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Figure 9, Figure 10, Figure 11 and Figure 12 show the verification results in graphical format: 
 

Figure 9. Verification result for Equation 1 

 

Figure 10. Verification result for Equation 2 
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Figure 11. Verification result for Equation 3 

 

Figure 12. Verification result for Equation 4 

Since first equation which predicts functional defects and uses total tester efforts in prior phases to 
testing demonstrated the most promising result, it was the initial defect prediction model for system 
testing. This is because equation fell between 95% prediction interval and the prediction range is also 
not as big as others. Thus, the prediction model equation is as below: 

 
Functional Defects = 4.00 - 0.204 Requirement Error - 0.631 Coding Error +  1.90 KLOC –  
 0.140 Requirement Page + 0.125 Design Page – 0.169 Total Test Cases + 

 0.221Total Effort Days 
 
Based on above equation, it means that the initial defect prediction model for system testing that has 

been formulated can only predict functional defects by using requirement error, coding error, KLOC, 
requirement page, design page, total test cases as well as total effort days spent by test engineers as the 
predictors. This equation still requires future and continuous improvement since it is not sufficient and 
practical to rely on only one model over long period of time to predict defects due to different software 
nature and behavior. 
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5. Conclusion 
 

It has been clearly demonstrated that regression analysis has been successfully applied to formulate 
a prediction model for system testing defects.  By using statistical approach such as regression analysis, 
the research can justify the reasons and significance of metrics from requirement, design and coding 
phase in predicting defects for system testing. Moreover, it is also explained that in order to have a 
good model, the prediction must fall between a defined minimum and maximum range so that it is 
feasible to incorporate and implement defect prediction as part of software development process, 
particularly test process. Having a prediction of defects using absolute number is not recommended 
since it requires highly reliable data and rigor data collection to be used for constructing such model. 

In carrying out the research, the activities were subjected to several limitations. First, the research 
only produced one general model due to limited number of data points. Second, data collected is only 
limited to software development projects in which their metrics are rigorously collected and tracked. 
Projects that were not involved in metrics collection are no part of the data collected. Third limitation 
is that this research only focuses on V-shaped development model since that is the process model being 
adopted by the organization selected for this research. Fourth, data set used in this research is a mix of 
metrics from web-based and component-based software. Therefore, findings of the research are the 
final result of using metrics from both software types. 

 
6. Future Work 
 

As recommendations for future improvement to the defect prediction model developed in this 
research, several things could be considered. More variants of the model could be developed by 
improving the model to predict non-functional test defects such as security testing defects, usability 
testing defects and performance testing defects. To achieve this, related metrics affecting these non-
functional testing must be well defined, collected and tracked. It is also good to have prediction model 
for different severity of testing defects that are minor, major and critical defects. Other suggestion 
would be to have more product-centric metrics like number of classes, function points or use case 
points to be used as the predictors for the model. In supporting the real time process for dynamically 
generating the latest defect prediction model, a software tool can be developed and used. 

It is hoped that the outcome of this research has been able to contribute and expand existing 
knowledge in software engineering domain, particularly in the area of software testing, software 
quality management and software process. With the continuous effort in improving such prediction, 
more high quality software product can be developed in the future. 
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