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Abstract. In this paper we study a two-echelon system including a vendor and a service 
provider in customer-intensive services which introduced by Anand et al. (2011). Customers wish 
for high quality of service, which leads to longer service time for the service-provider. In the 
other hand, longer service times can cause to longer waiting time which is not desired for 
customers. So, tradeoff between service rate and quality of service/or product is critical. The 
market demand is according to Poisson process. The vendor will immediately send the order to 
the service-provider which works as a M/M/1 production system. The transportation time 
between the service-provider and vendor controlled by the service-provider, and is assumed to be 
deterministic and constant. Each customer has a different waiting cost per unit time and 
different expected value from a product or service; therefore, they decide whether to join the 
system or not based on the service value, price and expected waiting cost. We derive the speed 
quality equilibrium of the system as well as the optimal service rate and maximum demand 
attraction. Furthermore, we investigate the best policy of the system including optimal 
transportation time, price and service rate. We show that the optimal transportation time is 
independent from Degree of customer-intensity (α) of the service. Also, the equilibrium price will 
cause classifying the market, namely “market base” for small values of α, and “individual base” 
for high values of α. Unlike in the “market base”, losing the much market share is not 
undesirable in the “individual base”. 
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1. Introduction 
Nowadays, due to the rapid technological improvements and in the presence of the competitive 

market, many factors are playing different roles in how a customer chooses a product or a service. In 
the past years, most of the industrial units have experienced a revenue accretion as their production rate 
increased, assuming that customers receive a constant service value which is independent of the service 
time. But Anand et al. (2011), for the first time, considered a model in which the service quality and 
service duration aren’t independent. They explored the resulting equilibrium behavior of customers and 
the service provider’s service rate and pricing decisions. In their model, higher revenue and demand 
attraction are not achieved while the production rate is increased. They investigate the interactions 
between the service quality (value) and service speed arising from customer-intensity. The product or 
service value is an important factor which impacts the costumer to induce him to decide whether or not 
to purchase a product.  For instance, software comes with various attributes and features; hence people 
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using this software differently will obtain different values. Software developers consider this fact while 
developing their software.   

Before Anand et al. (2011) many papers explore equilibrium queue joining, pricing and service rate 
decisions. There are a number of papers in the literature that address the decision-making of customers 
who decide whether or not to join a queue in order to use the service. Naor (1969) is the earliest paper 
that studies customer autonomy in service systems; he showed that there is an aggregate equilibrium 
pattern of behavior, which may not be optimal for the whole society. Many other papers explored 
equilibrium queue joining in their systems. For example: Cachon and Harker (2002) in a competition 
between two service-providers with price- and time-sensitive demand; Chen and Wan (2003) in a 
model of a competition of two make-to-order firms in which each firm tends to take a larger market 
share; Chen and Frank (2004) in a monopoly system whose customers cannot observe the queue when 
they must choose whether to place an order (Unobservable queues). They investigate the situations in 
which the customer preferences are linear and non-linear; Afeche (2006) in the design of price-
scheduling mechanisms for a capacity-constrained firm that serves heterogeneous time-sensitive 
customers with private information on their willingness to pay, time-sensitivity and service 
requirements; Wang and Debo (2009) in medical diagnostic services (which are call centers that 
provide guidance to patients about what the most suitable action is according to their symptoms). There 
are other papers that consider queue joining. For example see Armony and Haviv (2000), Gilbert and 
Weng (1998), Kalai et al. (1992), Lederer and Li (1997), Li (1992) and Li and Lee (1994). 
Furthermore, we refer the reader to Hassin and Haviv (2003) who provide a comprehensive review of 
this literature. There are some papers in the literature that study the speed and quality interaction. 
Lovejoy and Sethuraman (2000) is among the first papers that studies the tradeoff between quality and 
speed in a specific manufacturing system using an M/M/1 queuing model. They explain that the quality 
consequences of complexity can be more significant than the time consequences; Oliva and Sterman 
(2001) show that working overtime may lead to quality issues. They discover that temporary 
imbalances between service capacity and demand interact with decision rules for capacity 
management, over time, and quality aspiration can lead to loss of revenue and permanent erosion of the 
service standards; Anand et al. (2011) focus on customer-intensive services in a queuing framework. 
They study the optimal “quality-speed tradeoff" in both single and multiple-server queuing settings; 
Kostami and Rajagopalan (2009) study the dynamic models in a monopoly system to explore the 
tradeoff between quality and speed. They allow the price to be a lever in determining demand levels; 
Lu et al. (2009) consider the tradeoff between quality and speed in a manufacturing rework context. 
They study how rework routing, wage and piece-rate compensation can strengthen incentives for 
quality. Kc and Terwiesch (2009) show that overworking is related to quality decline in hospital 
operations, and has an effect of decreasing the service rate. They point out that personals accelerate the 
service rate as load increases. Ren and Wang(2009) consider the relationship of the service quality and 
the patient volume in hospitals. Also, there are some other papers that consider the interactions 
between quality and speed, for example: De Veri-court and Zhou (2005) in routing unresolved call-
backs; Hasija et al. (2009) for an empirical study of call centers; de Vericourt and Sun (2009) in the 
context of judgment accuracy, and Wang et al. (2010) for medical diagnostic services. 

In the present model, similar to Anand model Customers exist in the market with an expected value 
for the product or service and join the queue based on service quality, delay costs and price until their 
utility function is not negative. There is an inverse relation between service time and product value in 
the service providers’ system. The service rate chosen by the service-provider affects the quality of the 
service. As the service rate increases, the waiting time in system and also the value for the product 
decrease, and vice versa. In order to obtain the maximum customer attraction in the market, it is 
necessary to establish a balance between quality (value) and service speed which Anand calls “Quality- 
Speed tradeoff”. The goal of this paper is investigating the system efficiency in a two-echelon system 
using Quality-Speed tradeoff and putting optimal production and logistic policies in a balanced 
condition. Unlike Anand's model which is one-echelon, our model is a two-echelon system: a vendor 
and a service-provider which serves either service or product. In our system,the transportation time 
between service-provider and vendor are deterministic and constant. Furthermore, the expected value 
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for product and waiting cost per unit time are various for each customer and uniformly distributed. We 
explore the optimal speed-quality equilibrium of the production system; then we investigate the 
optimal service rate as well as the maximum demand attraction. Assuming that the service-provider 
controls the transportation system, the optimal transportation time, price, and the service rate are 
determined. All the results computed by maple 13. It is shown that by improving the transportation 
system and moderating the price, the service-provider can achieve higher revenue. 

In section two the model is explained to its details. In section three, the effective arrival rate and the 
bounds for transportation time, production rate are obtained based on the customer utility function and 
market attraction. In section four the service provider revenue function and its decision variable and 
strategic variable are studied. Section five is devoted to the optimal algorithm and finding the decision 
variables the strategic analysis on the optimal policy and system equilibrium. Finally in section six the 
obtained results are reviewed and the future research is proposed. 
 
2. Model 

 Our model is a two-echelon Queuing-service system which consists of a service-provider 
and a vendor. Demand arrives to the vendor according to the stationary Poisson process. The 
vendor will immediately send the order to the Service- provider which works as an M/M/1 
system. The Service-provider is capable of accelerating the transportation system by 
undertaking its relevant cost in order to reduce the waiting time. Furthermore, information about 
market size (η), product or service price (P), service rate (µ), waiting cost per time unit (C) and 
customer expected value (V) are known. Suppose that both the waiting cost per unit time in the 
system and the customer expected value have uniform distribution: 

 
�� ∊ �0, ��� , �� ∊ �0, ��� (1) 

We define the customer utility function as below:  
 

�� = �� − �����, �� − � (2) 

In which ( , )W λ µ is the average waiting time for the customer to receive a product or service. 
That is a function of system arrival rate and service rate. Remember that customers join the 
queue with the rate of λ. Since the production system is M/M/1 and with considering the 
transportation time, T, we derive:  

 

���, �� = � 1
� − �� + � (3) 

In this case people join the system if their utility function is not negative; otherwise they will 
refrain. So, considering the Equation (2), we have:  

 
�� ≥ �����, �� + � (4) 

The classical queuing models assume that customers receive a constant service value, V, for 
every product or service, which is independent of the service time. In those models, increasing 
the service rate always results in higher revenues, as it allows the firm to lower the expected 
waiting time and serve more customers. In this paper, like Anand's model, the quality or the 
service value for customer increase with the spending time for its production. In our model the 
service value is defined the same as Anand's model:  

 
�� = �� + ��� − �� (5) 
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In which the parameter α ≥ 0 captures the customer-intensity of the service provided and is 
determined according to the market. �� and �� respectively serve as a benchmark service rate 
and a benchmark service value. 
 
3. Queue Joining Decision 

In order to receive a service or purchase a product the costumer considers his utility function which 
is the combination of the cots and the gains. In fact the costumer wants the obtained value of the 
service or product to be greater than the costs such as waiting cost and purchase cost. In the following 
section the costumer behavior in this equilibrium is investigated. 
 
3.1. Determining system arrival rate: 

Now suppose that the service-provider serves its customers with the value of V0, considering 
the customer expected value and waiting cost per unit time for them. Then for the service-
provider to be able to cover a part of market, it is essential that V0 satisfies the condition below 
because the customers’ utility function should be non negative: 

 

� + �� �1
� + �� ≤ �� ≤ � + �� � 1

� − � + �� (6) 

We can simply determine the effective arrival rate, λ , that is the fraction of the total market 
size that join the queue. We know that the portion of the total market join the system if their 
expected value is not greater than V0 and satisfies the Equation (4). So the effective arrival rate 
can be easily obtained from below equation: 

 

� = �
� � ������

�����,����
��

�
���� (7) 

Solving the above equation, two roots are obtained for λ, but considering 0<λ<η, the feasible 
arrival rate is given by:  

 

λ� = 1
4V�

�−�C�T − 2V� + 2P��η� + 4V���Tμ + 2�ηC� + 2μη�P − V�� + 4V��μ�

+ �−C�T + 2V� − 2P�η + 2V�μ� (8) 

It is necessary to V0 to be greater than or equal to � + �����, ��. For satisfying this Strategic 
condition, considering the Equations (3) and (5), we solve this equation with respect to T. Then 
we have: 

 

� ≤ 2�������� − �� − ��� − ��� − ��� − ���� − ���� + � − ����

��{���� − ���� + � − ��� + 2���} (9) 

Lemma 1: no costumer will join the system if the price is greater than �� − ��
�� − ���

�
Proof: Clearly, the arrival rate is decreasing with respect to the price, so we could determine 

the price in which the arrival rate would be equal to zero and after which the arrival rate would 
be negative. By setting the right-hand-side of the equation (8) equal to zero and solving it with 
respect to P, the maximum price could be obtained. 

Lemma2: with constant service rate,  �� is a strongly decreasing function with respect to p.  
Proof: By derivating the Equation (8) with respect to P, and setting it equal to zero: 
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−2ηV� + η�TC� + 2P� + 2μV�

�4η�V�� − 4ηV��η�TC� + 2P� + 2μV�� + η��TC� + 2P�� + 4ηV�C��Tμ + 2� + 2μP
+�2μV���

= −1
(10) 

Consider that the denominator and nominator of the left-hand-side of the above expression 
are always positive, so, the derivative doesn’t cross zero at any point. On the other hand, �� has 
positive and zero values, and also, lim�→�  ����, �, �� = −∞  then it would be strongly 
decreasing function with respect to P.  

Lemma 3: Supposing the constant service rate, �� is decreasing with respect to T. 
Proof: By derivating the Equation (8) with respect to T, and set it equal to zero, we get the 

Equation (10) Similarly, considering that the derivative has no root, and lim�→�  ����, �, �� =
−∞. Then it would be strongly decreasing function with respect to T. 

Theorem 1: the maximum customer attraction from the market is as below: 
 

���� = −� ��2��� − �� − ���
�� + �� � (11) 

Proof: considering the Equation (8), it can be easily shown that lim�→�  ����, �, �� = −∞ and 
lim�→��  ����, �, �� = −∞ . Because �� is a continuous function, so, the joining rate has a 
maximum point with respect to �. Using simple calculus, we can have �� that maximize the 
joining rate as follows: 

 

�� = 1
2 ��2������ − ���� + 2����� + ���2�� − ��� − 2��

���� + ��� � (12) 

Introducing the above equation in the Equation (8) we get: 
 

�����, �, �� = − �
2 �2�2���−2��� + 2� + ��� − 2��

�� + �� � (13) 

Regarding the market conditions���, ��, ��, in the extreme condition, the service-provider 
sets the values of the price and transportation time to zero, so, Equation (11) can be obtained. 

This means that considering the market conditions, for any service providing policy, the 
value of the maximum attractable demand would not be greater than ���� . In other words, the 
market imposes these conditions on the service-provider at the beginning of establishing the 
service providing system. With studying the behavior of  ����  for small and large values of  �,
we can infer its relations to the benchmark parameters. For very small values of �, we have 
lim�→�  ���� = � ���

��
�. This means that with the insensitive  � in the market, the maximum value 

of attraction rate highly depends on the benchmark service value. Actually, in the insensitive 
market, the proportion of the maximum attraction rate to the potential rate is equal to the 
proportion of benchmark value to the maximum expected value of customers. Similarly for 
large values of � with sensitive market conditions, we get lim�→�  ���� = �� , the maximum 
value of attraction rate highly depends on the benchmark production rate, and is almost equal to 
it.  
 
3.2. Determining feasible production region 

In this section we want to determine the feasible region for the service rate. We consider 
boundary conditions, which justify the existence of the provider and service system. In this 
condition, the service rate should be determined in a way that arrival utility function is positive 
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with the price of zero and without market coverage. In other wo
�� = �� + ��� − �� . Now according to this equation, we can find the feasible region for the 
production rate.  

Lemma4: For having a valid service rate, it should be in the below ranges:

Proof: By solving�� ��
� +

����, �� � 1
2� Q�� � �

 5�
P3��, �� �

1
2� Q�� � �

� 5�

We denote this region by F (
respect to α. The red line shows the upper band variations while the green line shows the lower 
one. This figure shows that, as 
value than this point (with respect to 
service-provider cannot provide the service to customers with their expected values. In order to 
analyze the effect of variations of 
positive two conditions should hold: first, the upper band should be a real number; secondly, the 
upper band should be positive. With these conditions, we define lemma 5 as fol
use these bands in the next sections in order to find the optimal solutions.

F

Lemma5: For planning the transportation time in the system, it is necessary to satisfy the 
below condition: 

 

Proof: According to Equation (14), the service rate must be lower than 
service rate should be positive. Consequently, it is necessary to the right
to be positive, So, by simplifying the 
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��  
��
�3��3 � �2��
�� � 2����  4
��� � �
��  ���3

��  
��
�3��3 � �2��
�� � 2����  4
��� � �
��  ���3
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�

�
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4. The Service-provider revenue function
The revenue function of the service

amount of incomes which are related to the customers’ arrival and the service costs. The second 
part is the service providing cost, which depends on the service pr
third part is the transportation costs which is a function of the arrival rate and transportation 
time. The service-provider should spend more cost in order for rapid sending and reducing the 
waiting time; hence, this cost has 
revenue function is determined as follows:

���, �, �

In which k and β are service providing cost per unit time and transportation fee respectively. 
Our numerical results and behaviour of the revenue function show that this function is concave 
in µ for a given price. An example of this function behaviour is shown in figure 2.
exists a service rate �U��� that maximizes the service provider's revenues. 

F

Now considering the effective arrival rate (Equation 8), and by introducing it in the profit 
function (Equation 18), the optimum value of 
respect to �:

�U��� � 1
2 V�W�

Where X is: 
 

X

� >�
� Y�
1
2�Z� � W�� 

1
2

 ��
��  2��� � 2�  2���
It is proved, with the obtained results, by 

revenues, T��, �U���� is concave with respect to price and has an optimal point. 
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should spend more cost in order for rapid sending and reducing the 
cost has an inverse relation with the transportation time. So, the 
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�� � ��=��, �, ��  W� 
Z
� �=��, �, ��

vice providing cost per unit time and transportation fee respectively. 
ehaviour of the revenue function show that this function is concave 
xample of this function behaviour is shown in figure 2.

hat maximizes the service provider's revenues. 

Figure 2. Concavity of revenue function versus µ.

ective arrival rate (Equation 8), and by introducing it in the profit 
optimum value of � could be obtained as below by derivation with 

2√2 X
�  �� � Z�8�����  Z� � W���9��� � ���\

���� � �
1
2Z���  ���]

3
�W�  �� � Z�
��W��� �

��W�  �� � Z�8�����  Z� � W���9
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5. Optimal policy for the system 
It is assumed that the service-provider can reduce the transportation time by incurring some 

costs, but it is desired to find out the beneficial transportation policy. Numerical results show 
that the equilibrium revenue function, ���, ������ , is concave in both T and P, and has a 
maximum value (see Figure 3); so, it can be optimized due to T or P. The results computed by 
MAPLE13, show that for any given P, the optimal T can be easily achieved through the 
numerical methods, and vice versa. Considering the concavity of equilibrium revenue function 
with respect to P and T, the optimal values of T and P are simultaneously obtained by using a 
iterative search algorithm.  

 

Figure 3. The behaviour of equilibrium revenue function in T and p.

It is obvious that T can not possess any arbitrary values in the real world problems. In 
fact T varies as a scale of a constant amount which is defined as the variation coefficient (scale) 
in the iterative algorithm. Starting with the minimum acceptable T, the optimal P and revenue 
function are obtained. By discretely increasing T based on the scale, the new optimal P and 
revenue are calculated in each step. The algorithm goes on until the first decline is observed in 
the revenue comparing to the previous step revenue. Table 1 shows the behavior of revenue 
function with respect to P and T using this algorithm. As shown in the table, the optimal T is 
0.5. 

 

Table 1. Obtaining Optimal Policy 
T µ P λ Optimal 

Revenue 
0.1 1.67588 6.89856 0.302716 1.16392
0.2 1.77111 6.23196 0.3438 1.53569 
0.3 1.79603 5.97558 0.355088 1.64634 
0.4 1.80444 5.82205 0.358947 1.68502
0.5 1.80638 5.70969 0.359838 1.69401
0.6 1.80509 5.61793 0.359244 1.68801 
0.7 1.80195 5.53793 0.357802 1.6735 
0.8 1.79765 5.46528 0.35583 1.65375
0.9 1.79257 5.39753 0.353504 1.6306 
1 1.78691 5.33321 0.35093 1.60516 

The parameters are: uC = 2, uV =14, bV =12, bµ =1.5, K=0.1, B=0.25, scale=0.1 
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Consider that for small transportation time, the service-provider incurs high costs, thus 
finding appropriate transportation time for the service-provider is considered as a problem. The 
service-provider wants to maximize his profit, and, on the other hand, the customers want to 
maximize their utility. Hence both of these groups impose their conditions on each other. If the 
service-provider sets the transportation time too small, the waiting time of customers would be 
shorter and their satisfaction and consequently the arrival to the system rise. But the service-
provider would face many costs. In order to achieve the profit, he would increase his prices and 
this will worsen the customers’ satisfaction. Finally under these mutual interactions arrival to 
system and consequently the profit will be decreased as shown in Table 1. 

Now with increasing the transportation time, moderating the price and service speed, arrival 
to system and consequently the profit would increase. On the other hand, if the service-provider 
sets the transportation time too high, the waiting cost for the customer would be so much that 
even moderating the price or speed wouldn’t cause to better customer’s utility. Therefore, this 
action has no good result for the system. For these reasons, finding the appropriate 
transportation time is one of the strategic variables for the service-provider in order to achieving 
high demand attraction in the market and more profit. With utilizing the repetitive algorithm 
discussed before, one could easily obtain the optimal transportation time. Based on the obtained 
results for 200 random problems, similar to table 1, it has been proved that the service-provider 
can achieve a better profit with investing in its transportation system and moderating the price, 
rather than the situation where there is no control over the transportation time. 

Proposition 1: the optimal transportation time for the service-provider is independent from 
density coefficient �.

Proof: Considering our observation and analyses, � doesn’t have any effect on choosing the 
optimal transportation time. As shown in Table 2, the optimal transportation time does not 
change with variation of �. Variations of � affect the service value (��). This would naturally 
change the arrival rate of the system. So, the price and service rate would be moderated in order 
to achieve the maximum profit. Hence � doesn’t have any direct considerable effect on 
determining T.  

 
Table 2. Behaviour of decision parameters with respect to α

Α T µ P λ Optimal 
Revenue 

0 0.25 2.70386 5.24186 0.364759 1.49573
0.4 0.25 1.79582 4.95728 0.332633 1.33632 
0.8 0.25 1.47411 4.85175 0.315344 1.25642
1.2 0.25 1.29393 4.81098 0.30359 1.20974
1.6 0.25 1.17447 4.80615 0.294942 1.18211 
2 0.25 1.0878 4.82491 0.288327 1.16704 
The parameters are: η = 1, uC = 3, uV =13, bV =11, bµ =1, k=0.1, β=0.1, scale=0.05 

 
Proposition 2: the joining (Effective arrival) rate and the service rate are decreasing with 

respect to �.
Proof: Keep in mind that the relation between the system and the market is very complex, 

because the reactions are mutual and simultaneous. All the decision variables of the service-
provider have mutual effect on each other and on the demand attraction. Here we take their 
equilibrium behaviour into consideration. Remember that the sensitivity coefficient � has a 
direct effect on the service value and on moderating the service rate. Now with � increasing, the 
service-provider would decrease the service rate in order to achieve the desired equilibrium 
service value. With this mutual reaction and the customer-intensity increase, the arrival rate 
would decrease. Then, the service rate and arrival rate have similar equilibrium behaviour 
towards the increase in �. Figures 4 and 5 show this behaviour for Effective arrival rate and 
service rate, respectively.   
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Figure 4. Effective arrival rate and customer
value 

Proposition3: the equilibrium price and the profit function have minima with respect to the 
Proof: The Service-provider determines the price based on his profit function. This price 

determines which level of customers in the market will join the system considering their utility 
function. Hence, the price value will cause the market classification
seen in the results, at first with increasing of 
order not to lose much market share. We name this behaviour of the system “market base”. 
Because in these occasions, the system
order not to lose the profit and demand. But the system increase the price from a special level of 
� because there are customers in the market with high value (V), and losing much of the market 
share is not undesirable. Because the system has changed its strategy and wants to attract 
special people with high expected service value.

In this occasion, it is desired that the system attracts fewer people but with more expected 
value that are able to pay more
With adopting this policy, increasing the price, and also attracting special customers, the system 
is able to achieve much profit in high 
special level of � and continue this behaviour. Figures 6 and 7 illustrate the behaviour of the 
optimal price and optimal revenue with respect to 
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6. Conclusion 
The paper studied the customer-intensity of a service in a queuing framework. We analyzed a 

two-echelon system consists of a vendor and a single service-provider. The vendor will 
immediately send the order to the service-provider which works as a M/M/1 production system. 
We assume that each customer has a different waiting cost per unit time and different expected 
value from a product or service; therefore, they decide whether to join the system or not based 
on the service value, price and expected waiting cost. 

For the service-provider, there is an inverse relation between the service time and product 
value. So the service-provider decides to adjust the optimal service rate to obtain the maximum 
revenue. We derived the speed-quality equilibrium of the system as well as the optimal service 
rate and Maximum demand attraction. Also, we determined the maximum price in which the 
market coverage still exists. We showed that the feasible region for the production rate is 
sensitive to the transportation time (T) and customer-intensity (α). We investigated the optimal 
servicer rate for a given price and, system behaviour in optimal speed-quality equilibrium 
condition. Assuming that the service-provider controls the transportation system, we studied the 
best policy of the system including optimal transportation time, price and service rate. It was 
shown that by improving the transportation system and moderating the price, the service 
provider can achieve higher revenue.  

It is shown that the optimal transportation time is independent from Degree of customer-
intensity ( � ) of the service. Also, the equilibrium price will cause classifying the market, 
namely “market base” for small values of �, and “individual base” for high values of �. Unlike 
in the “market base”, losing the much market share is not undesirable in the “individual base”. 
In “market based”, the system consider the whole market and decrease the price with increasing 
of �, in order not to lose much market share. However, in the “individual based”, the system has 
changed its strategy and wants to attract fewer people but with more expected values that are 
able to pay more prices. With adopting this policy, increasing the price, and also attracting 
special customers, the system is able to achieve much profit in high � ’s, hence the profit 
behaviour curve increase from a special level of α and continue this behaviour. 

Our research could be extended in several possible directions. First, we assumed that both the 
waiting cost per unit time in the system and the customer expected value have uniform 
distribution,These distributions can be assumed generally. Second, we could extend the current 
model to multi-vendor system in which holding the inventory can be allowed. Third, a multi-
product model can make the solutions become much more experimental and closer to the real 
world problems. Also many different vendors at different locations can be considered, for 
example geographically speaking, in different locations and population specification expected 
value and waiting cost and transportation time and service receiving time. Therefore to 
dominate the market in different places, more complex policies must be taken which can be 
studied in future studies. 

Marketing strategy can be applied to this model for example in hi-tech aspects, skimming 
pricing strategy is suitable attract the demand, where in this case more factors are playing in 
decision making. Furthermore different competitors can be considered and their counteraction 
can be studied.  
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