
International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

1

Application of Different Metaheuristic Techniques for Finding Optimal

Test Order during Integration Testing of Object Oriented Systems and

their Comparative Study

Chayanika Sharma*
1
, Ritu Sibal

2

1, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
2, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India

Email: 1
chayanika_29a@yahoo.com,

2
ritusib@hotmail.com

Abstract. In recent past, a number of researchers have proposed genetic algorithm (GA) based

strategies for finding optimal test order while minimizing the stub complexity during integration

testing. Even though, metaheuristic algorithms have a wide variety of use in various medium to

large size optimization problems [21], their application to solve the class integration test order

(CITO) problem [12] has not been investigated. In this research paper, we propose to find a

solution to CITO problem by the use of a GA based approach. We have proposed a class

dependency graph (CDG) to model dependencies namely, association, aggregation, composition

and inheritance between classes of unified modeling language (UML) class diagram. In our

approach, weights are assigned to the edges connecting nodes of CDG and then these weights are

used to model the cost of stubbing. Finally, we compare and discuss the empirical results of

applying our approach with existing graph based and metaheuristic techniques to the CITO

problem and highlight the relative merits and demerits of the various techniques.

Keywords: Metaheuristic techniques, CDG, stub, test order, genetic algorithm, Integration Testing

* Corresponding Author:

Chayanika Sharma,

Faculty of Computer Science and Engineering,

Delhi University, India,

Email: chayanika_29a@yahoo.com Tel: +91 9911718232

1. Introduction
Software testing represents a substantial percentage of the cost of developing software systems.

Typical percentages range between 30% and 60% [1]. Software testing is carried out to detect presence

of faults and to evaluate whether the software works correctly as specified by requirements. However,

software testing is a time consuming and expensive task [2], [3]. Testing of OO software is different

and difficult than traditional software, considering the complex dependencies that exist between classes

due to generalization and client-server relationships. One of the challenges in testing of OO systems is

to perform integration testing of classes containing thousands of circuits, potentially denoting as many

ways for class instances to interact[4] [5].

Integration testing is a software testing technique that aims to find errors associated with the

interfacing and integration of system components [6]. In OO testing, it is difficult to determine the

order in which classes are to be integrated and tested [7]. One of the main difficulties for cost-efficient

integration of components is minimization of the number of stubs to be written. Stub is a place holder

for a class that does not implement the full functionality but only necessary partial functionality for its

compilation and integration [8]. A stub is created for every removed class in the system, thus

increasing cost of integration. Stubs can be modeled as: specific stubs and realistic stubs. A specific

stub simulates the services for use of a given client only. Realistic stub simulates all services that the

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

2

original class can provide [9]. In CITO problem, the goal is to determine the order in which classes

can be integrated so as to minimize stub construction cost.

The CITO problem is very important to industry, most companies solve it very badly, leading to

wasted resources and faulty software. Moreover, the research community has published several good

solutions that are either not in use or very costly. Most companies integrate groups of classes that are

big enough so that there are no cycles. This makes testing difficult, debugging much more expensive,

and ultimately allows more integration faults to slip through into system testing. Several methodologies

and strategies have been proposed for finding the optimal test order during integration testing of OO

systems and solving CITO problem. These strategies are primarily of two types [7] viz. GA based

strategies and graph based strategies. GA is an evolutionary algorithm based on the concepts from

biological evolution [3] [10]. In graph based approach, the system space is represented as a directed

graph. Graph based testing strategies are unable to deal with breaking dependencies among

components, thereby making it difficult to identify the integration test order [13]. In graph based

approach, the dependency cycle sorting is applied to remove the cyclic dependency between

components. Integration test order is then obtained by applying reverse topological sorting. However,

in real life problems the topological sorting is not just difficult but impossible [12].

The major issue in integrating OO software is with cycles. When breaking a cycle, we must

create "stubs" to provide partial implementations of classes that have not yet been integrated.

The goal is to break cycles in such a way that the cost of these stubs is minimized. This paper

suggests a new genetic algorithm based approach for computing the order in which classes

should be integrated.

This paper is divided into eight sections. In section 2, we present an overview of related work.

Section 3 describes the modeling of UML class dependencies using CDG. Section 4 describes in detail

our proposed approach. Section 5 presents experimental results of our proposed approach. In Section 6,

we compare the results of our approach with other existing graph based and GA based approach.

Section 7 discusses the empirical results of applying GA, micro-GA and cuckoo search algorithm on

CITO problem. Finally, section 8 concludes our research work.

2. Related Work
Thierry Jeron et al. [11] have proposed a graph model called test dependency graph (TDG) for the

representation of test dependency in OO systems. The approach focuses on three types of

dependencies: ‘method to method’, ‘class to class’ and ‘method to class’ to find the optimal test order.

Jutarat et al. have proposed an approach to reduce the number of stubs in a test order using OO slicing

technique and TDG. Class slicing is a kind of partial testing in OO slicing technique. The strategy uses

Tarjan’s algorithm [14] for finding strong connected component (SCC). SCC of a graph is a sub graph

such that for any pair of vertices u, v, there is a path from u to v and vice versa. Two vertices are

equivalent if they are in the same SCC [11]. Tai and Daniel [15] have proposed a two stage algorithm

to remove dependency cycles. Le Traon et al. [16] have proposed an alternative strategy based on

graph search algorithms that identifies SCC and yields more optimal results. Kung et al. [17] point out

that association relationships are usually the weakest links in a class diagram and stated that every

cycle in a class diagram contains at least one association relationship. C. Briand et. al. [4] have

systematically reviewed and analyzed existing graph based techniques to generate test orders having

minimum number of stubs. The existing techniques for generating test orders while integrating classes

by Briand et.al. , Le Traon and Tai and Daniels have been investigated on different case studies.

Aynur Abduzarik et. al. [12] used new technique and proposed a graph based algorithm to solve CITO

problem. The test dependencies between classes were modeled using weighted object relation diagram

(WORD). The weights to WORD are assigned to represent cost of creating stubs. The algorithm uses

edge weights and node weights to solve CITO problem.

In recent past, other approaches to find optimal test order have also been proposed [13] [18]. These

are not graph based but make use of GA. GA has emerged as a practical, robust optimization technique

and search method. A GA is a search algorithm that is inspired by the way nature evolves species using

natural selection of the fittest individuals. Briand [18] has used GA to find the optimal test order by

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

3

measuring stub complexity. The composition and inheritance relationships are considered as strong

relationships that cannot be broken. The complexities of association, aggregation and usage

dependencies were computed based on the level of coupling between client class and server class.

Coupling is measured using attribute dependency and method dependency. The cost function is defined

by attribute dependency and method dependency to be minimized by GA. Vu le Hanh et. al. [9] used

GA to find the optimal integration order by using number of stubs as a cost function to be minimized.

Triskell’s strategy has been adopted in their work.

Erik Arisholm et. al. [20] calculates percentage of intensity of interaction in dynamic model by

determining the messages sent between objects in the UML sequence diagram. In our approach, we

adopt Arisholm’s strategy by determining number of methods and attributes shared or inherited among

classes by aggregation, composition, association and inheritance test dependencies to determine

coupling strength (CS). Cycle weight (CW) to determine weight among classes is adopted from Aynur

Abduzarik’s strategy [12]. Number of cycles in CDG determines the CW for each edge. In our work,

stub complexity is determined by three parameters namely CS, CW and information flow (IF) metric

[27]. IF determines the information flow complexity associated with each class or component in a class

diagram. Also, we have proposed CDG to show test dependencies in the OO system. Thereafter, GA is

applied to find the test order having stub of minimum complexity and thereby minimizing cost during

integration testing of OO system. Although GA has already been used by researchers to solve CITO

problem, in our research we have used a different strategy to find the cost of each test stub and also

applied cuckoo search algorithm and Micro-GA to solve CITO problem.

Micro-GA and cuckoo search algorithm has not been applied so far for determining optimal test

order during integration testing of OO system. Micro-GA refers to small population size with

reinitialization [25]. Micro GA was first implemented by K. Krishankumar [26], with population size

of 5, crossover rate of 1 and mutation rate of 0.0. Only best candidates are carried to the next

generation. Tournament selection strategy is used for selection of individuals. Cuckoo search algorithm

is proposed by X. S Yang and S. Deb in 2010. In cuckoo search algorithm, each generation is

represented by a set of host nests each carrying an egg or the solution. The number of solutions remains

fixed in each generation. Cuckoo bird lays her egg in the nest of another host species. The host bird

discovers egg of another species with a probability pa ϵ [0, 1]. On discovering egg of another species,

the host bird either throws the egg or destroys the nest. The new egg is formed by modifying one

solution randomly. If new solution is better than existing solution, replace existing solution. In cuckoo

search, elitism is adopted where only best individuals are carried over to the next generation. Worst

solutions of fraction pa are discarded when new solutions are built. Cuckoo search algorithm has been

applied to solve design optimization problem [21] [22] [23]. In X. S. Yang et. al. work [21], cuckoo

search algorithm is simulated and compared with GA and particle swam optimization. The results of

cuckoo search algorithm have been found superior for multimodal objective functions than GA and

particle swam optimization. Micro-GA has been applied for solving optimization problems [24] [25].

Y. Quin et. al. [24], applied Micro-GA to optimize time domain ultra wide antenna array. In K.

KrishanKumar [26] work, results of Micro-GA are better and faster when compared with simple GA

(population size = 50, crossover rate = 0.6 and mutation rate = 0.001) on two stationary functions and

real world control engineering problem.

3. Modeling Class to Class Dependency
Several relationships are used to model dependencies in static and dynamic UML diagrams. Some

of relationships used to model dependencies are association, aggregation, composition and inheritance.

In this section, we define CDG to model various class to class dependencies in static UML class

diagram.

3.1 UML TO CDG Mapping
The association, aggregation, composition and inheritance relationships are commonly used to

exhibit dependencies between classes of UML class diagram. Figure 1 shows the rules to map

aggregation, composition, association and inheritance relationship in UML class diagram into CDG.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

4

Figure 1. CDG Mappings

The mapping between component A and component B of a CDG are summarized below:-

a) Aggregation: - We use the term optional dependency in our work and this is represented as a dotted

arrow with ‘o’ symbol on the top. The aggregation is mapped into association relationship from B to A

and optional dependency from A to B. The optional dependency from A to B implies that aggregate B

is optional for A because in aggregation, the aggregate part is not mandatory for part component and

the owner may change over time.

b) Composition: - In composition relationship, the lifetime of component A is dependent on aggregate

component B. Therefore, composition relationship is shown as the dependency between A on

aggregate B and association from B to A.

c) Association: - The association relationship between component A and component B is shown as

bidirectional association from A to B and B to A.

d) Inheritance: - The inheritance relationship between component A and component B remains the

same and is left untouched.

4. Proposed Approach
In the present research work, our aim is to identify the integration test order for an OO system that

results into minimum cost of stub construction. To do so, we have applied GA based approach. GA is

useful for making decent approximations with very large data sets. In our paper, CITO problem is

applied on large sized case study. GAs are useful when the data sets get large, whereas detailed

analysis algorithms almost always yield better approximations but blow up with large data sets. A

practical disadvantage of GA involves longer running times on the computer.

To model the dependencies namely, association, aggregation, composition and inheritance between

classes of UML model we propose a CDG. A weight is assigned to each edge of a CDG. Higher is the

weight of an edge, higher is the stub complexity of the stub required to break a dependency between

classes of CDG. The procedure for assigning weight to an edge of a CDG is illustrated in section 5.In

our GA based approach, a weight or fitness value is assigned to each edge of CDG. Initially, a UML

class diagram is converted into a CDG, where the nodes represent classes and edges represent the

structural dependencies between them [6] [11]. In CDG, the association, aggregation and composition

relationships of a class diagram are mapped into bidirectional edges. The weight of each edge

connecting client and server class in the CDG is determined by CS, CW and IF. We define these three

parameters as follows:-

Coupling strength (CS):- A class is coupled with another class, if methods or instance variables of one

class use methods or attributes of the other [4]. In our work, CS between server class and client class is

determined by the number of methods and attributes of the server class used by client class having

aggregation, composition, association or inheritance dependency divided by the number of methods

and attributes in server and client class as shown in equation 1.

CS = Number of methods and attributes used by client class / Total number of methods and attributes

in server and client class (1)

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

5

In composition dependency, there exist a whole – part relationship where life time of attributes or

members of a whole classifier is dependent on part classifier. If a whole classifier is deleted, then part

classifier also gets deleted. Although the part classifier can be removed before whole classifier is

deleted. In inheritance relationship, if the parent class or superclass is deleted then all the subclasses or

child classes also get deleted. Therefore, the removal of inheritance and composition dependency will

lead to deletion of subclasses and part classifier. In our work, we have considered composition and

inheritance as strongest relationship as breaking them will lead to high stub complexity. Consequently

in order to reduce stub construction cost we try to prevent breaking inheritance and composition

dependencies.

Cycle Weight (CW):- CW of an edge is determined by identifying number of cycles the edge is

involved in divided by total number of cycles in the SCC.

Information Flow (IF):- IF determines the information flow complexity associated with each class

[27]. IF for each class A or IF (A) is calculated by applying equation given below:-

IF (A) = FANIN (A) * FANOUT (A) (2)

Where, Fan In is number of components calling A and Fan out is number of components called by A.

To avoid large computational values, we have changed multiplicative operator in equation 2 to additive

operator for determining IF (A) as shown by equation 3.

 IF (A) = FANIN (A) + FANOUT (A) (3)

After converting a class diagram into a CDG, SCC is identified using Tarjan’s algorithm. GA

operators are applied to determine the test order having test stubs of minimum complexity. Finally,

integration test order with minimum complexity for writing test stubs is obtained. The edges having

minimum test dependencies will have least stub complexity, if broken. In other words, breaking the

dependency of an edge connecting two classes having high CS, CW and IF will lead to high stub

complexity if broken. Higher the level of CS, CW and IF between client and server class, higher will

be the cost of breaking dependencies between them. The procedure is outlined as steps below.

Procedure

Steps involved for identifying the optimal test order during class integration testing are outlined as

following:-

1. Convert the UML class diagram into CDG Gi = (Vi, Ei)

2. Apply Tarjan’s algorithm to identify the SCC in Gi.

3. Identify the cycles involved in the
ii GSCC .

4. Assign weight Wi to each edge SCCEscci by applying equation 4.

CS

IFCW
kWscci

*
* (4)

Where, k is a constant and is 0 for inheritance and composition dependency and 1 for other

dependencies. We assume, if the dependencies between client and server class is zero, then

dependencies are not supposed to be broken. CS is the number of methods and attributes of a server

class inherited or shared by a client class having association, aggregation, composition and inheritance

test dependencies divided by total number of methods and attributes in server and client class. CW is

the number of cycles an edge is involved in divided by total number of cycles in the SCC and IF is

information flow complexity associated with each node or class determined using equation 3.

Consequently, Wscci is used as a fitness function in GA.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

6

5. Selection: - Possible test orders in SCCi form the chromosome or the candidates for initial

population. Therefore, in our case study a class represents a gene and a string of possible classes

forming a test order represents a chromosome. The permutation encoding technique [28] is used to

represent the solution to our problem. For a set of class {A, B, C, D, E and F} a possible chromosome

sequence is {B, C, E, F, A, and D}.

6. Crossover: - There are number of techniques of crossover, but all require swapping of genes or

sequence of bits in the chromosome. It involves swapping between two individuals or test data in our

case. One point crossover is applied in our work. In general, constant crossover and mutation

probability is applied in GA. In Bo Zhang and Chen Wang work [19], adaptive crossover and mutation

probability has been applied. The crossover probability Pc and mutation probability Pm is high for bad

individuals having low fitness value and is low for good individuals having high fitness value. Based

on the Bo Zhang’s approach [19], we have assigned high crossover probability Pc1 = 75 to the bad test

orders having fitness value greater than average fitness value and lower crossover probability Pc2 = 20

to good test orders having fitness value less than the average fitness value. This prevents good test

orders or individuals from being modified.

7. Mutation: - Mutation is performed to introduce new traits or bring diversity in the population to

avoid local optima. In mutation the bits are flipped from 0 to 1 and vice versa. Mutation probability Pm

is different for individuals having high and low fitness value. High mutation probability Pm1 = 25 is

assigned to bad individuals or bad test orders having fitness value higher than average fitness value and

low mutation probability Pm2 = 15 is assigned to good individuals or good test orders having fitness

value less than average fitness value.

8. If all or set of edges have same weight, four rules have been proposed for converting cyclic CDG to

an acyclic CDG, to be able to perform integration testing. These are as follows:-

RULE 1. Remove an edge involved in a cycle having weight Wi higher than other edges in the

SCC.

RULE 2. Remove the optional test dependency (OTD) or use dependency relationship in case

of tie between association test dependencies.

RULE 3. In case of tie between two association test dependencies, edge having higher weight

Wi is removed first.

RULE 4. In case, two associations under test have same weights then delete the edges

traversed first in depth first search (DFS) call of Tarjan’s algorithm.

We have assumed use dependency relationship as the weakest relationship among association,

aggregation, composition and inheritance relationships. A dependency relationship exists when one

class requires another class for its execution [11].

1. Convert class diagram into CDG, Gi = (Vi, Ei).

2. Apply Tarjan’s algorithm to identify SCCi Gi.

3. If SCC exists in a Gi

4. for each ()(, sccisccii EVSCC do

5. find total number of cycles in SCCi

6. for each ESCCi do

7. Remove ESCCi in decreasing order by weight Wi determined using equation 4.

8. If Escci have equal Wi and CWi

9. Remove Escci having dependency or optional test dependency

10. Else remove edge traversed first in DFS call of Tarjan’s algorithm.

11. end for

12. Generate test order
ii SCCT or initial population randomly.

13. for each (
ii SCCT) do

14. Determine fitness value or Wi.

15. Apply crossover and mutation operators to generate individuals in the new population.

16. If Wi >Fitness Average , Pc1 = 75% and Pm1= 25%

17. Else Pc2 = 25% and Pm2 = 15%

18. End If

19. Repeat GA process until termination criteria is reached.

20. End for

21. End for

22. End if

23. Apply topological sorting algorithm to construct integration order for Gi.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

7

Figure 2. Algorithm for the Proposed Approach

9. Apply Topological sorting algorithm to construct integration test order for the graph Gi.

Algorithm of our proposed approach is shown in Figure 2.

5. Case Study

 Figure 3. ATM Class Diagram

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

8

Figure 4. CDG of ATM Class Diagram (As -> Association, Dep -> Use Dependency, OTD ->

Optional Test Dependency)

The proposed approach is applied on the class diagram of an ATM system shown in Figure 3. The

association, aggregation and composition relationships are used to show the dependencies between

classes. The class diagram of Figure 3 is converted into a CDG as shown in Figure 4. The modeling of

various test dependencies while converting ATM class diagram into CDG is shown in Table 1.

Table 1. ATM Class Diagram to CDG Modeling
S.NO RELATIONSHIP CLASSES PROPERTIES CDG MODELING

1. Composition Printer and ATM

(A and G)

whole classifier (G)

part classifier (A)

A->G (Use Dependency)

G->A (Association)

 Fund Deposit and ATM (F and G) Whole classifier (G)

Part classifier (F)

F->G (Use Dependency)

G->F (Association)

 Customer Card Reader and ATM

(J and G)

Whole classifier (G)

Part classifier (J)

J->G (Use Dependency)

G->J (Association)

 ATM Console and ATM (C and G) Whole classifier (G)

Part classifier (C)

C->G (Use Dependency)

G->C (Association)

 ATM Monitor and ATM (D and G) Whole classifier (G)

Part classifier (D)

D->G (Use Dependency)

G->D (Association)

 Operator Console and ATM (S and G) Whole classifier (G)

Part classifier (S)

S->G (Use Dependency)

G->S (Association)

 Cash Deposit Slot and ATM (R and G) Whole classifier (G)

Part classifier (R)

R->G (Use Dependency)

G->R (Association)

 Fund Dispenser and ATM (L and G) Whole classifier (G)

Part classifier (L)

L->G (Use Dependency)

G->L (Association)

 Customer Account and Bank Database (U and Q) Whole classifier (Q)

Part classifier (U)

U->Q (Use Dependency)

Q->U (Association)

2. Aggregation ATM and Session (G and N) Whole Classifier (G)

Part classifier (N)

N->G (Association)

G->N (Optional Test Dependency)

 Session and Transaction Log (O and N) Whole classifier (N)

Part classifier (O)

N->O (Association)

O->N (Optional Test Dependency)

3. Association ATM and Status Enquiry (G and B) Unidirectional Association G->B (Association)

 Status Enquiry and Mobile Application (B and E) Bidirectional Association B->E (Association)

E->B (Association)

 Bank and Mobile Application (H and E) Bidirectional Association H->E (Association)

E->H (Association)

 ATM and Bank (G and H) Unidirectional Association G->H (Association)

 Bank and Cash Balance (H and I) Unidirectional Association H->I (Association)

 Bank and Bank Database (H and Q) Bidirectional Association H->Q (Association)

Q->H (Association)

 ATM and Bank Database (G and Q) Bidirectional Association G->Q (Association)

Q->G (Association)

 Cash Balance and Fund Available (I and P) Bidirectional Association I->P (Association)

P->I (Association)

 ATM and Fund Available (G and P) Unidirectional Association G->P (Association)

 Cash Balance and Cash Withdrawal (I and M) Bidirectional Association I->M (Association)

M->I (Association)

 Cash Withdrawal and Fund dispenser (M and L) Unidirectional Association M->L (Association)

 ATM and Customer Log (G and K) Unidirectional Association) G->K (Association)

 Session and Customer Log (N and K) Bidirectional Association K->N (Association)

N->K (Association)

 Session and Customer Card Status (N and T) Bidirectional Association N->T (Association)

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

9

T->N (Association)

 Mobile Application and Transaction Log (E and O) Bidirectional Association E->O (Association)

O->E (Association)

 Status Enquiry and Bank (B and H) Bidirectional Association) B->H (Association)

H->B (Association)

The SCC identified by applying Tarjan’s algorithm in CDG of ATM is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21}. The cycles identified in CDG are shown below:-

1. A -> G -> A 15. G->Q->G

2. C -> G -> C 16. G->H->I->P->G

3. D -> G ->D 17. G->H->Q->G

4. R -> G -> R 18. Q->U->Q

5. L -> G -> L 19. G->K->N->G

6. E -> H-> E 20. I->P->I

7. B -> H -> B 21. E->O->E

8. S -> G -> S 22. I->M->I

9. F -> G -> F 23. B->E->B

10. J->G->J 24. G->H->I->M->L->G

11. G->N->G 25. G->H->E->O->N->G

12. N->O->N 26. H->G->B->E->H

13. N->T->N 27. G->P->I->M->L->G

14. K->N->K 28. H->Q->H

Table 2. Edge Weights for SCC {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

For space reasons, variables used between client and server classes are not shown in the ATM class

diagram. Weight Wi for each edge in a CDG is determined by applying equation 3. The edge A->G has

CS A where server class G is using one variable from class 1. Hence its CS is 1/11. The CW for edge is

determined by number of times edge is involved in cycle divided by total number of cycles in CDG.

The edge A->G appears in cycle 1 and the total number of cycles in ATM CDG is 28, hence CW of

S.

No.

Edge CS CW IF (A-> B)

= IF (A) + IF

(B)

Wi / Fitness

Function

S. No. Edge CS CW IF (A-> B)

= IF (A) + IF (B)

Wi / Fitness

Function

1. A->G 1/11 1/28 26 11.56 25. 5->2 4/10 1/28 11 1.1

2. G->A 2/11 1/28 26 5.78 26. 8->5 1/12 2/28 13 11.38

3. F->G 2/10 1/28 26 5.2 27. 5->8 1/12 2/28 13 11.38

4. G->F 1/10 1/28 26 10.4 28. 7->8 6/13 4/28 31 9.43

5. J->G 1/8 1/28 26 8.32 29. 8->9 1/13 2/28 12 10.5

6. G->J 2/8 1/28 26 4.16 30. 8->17 3/10 2/28 13 3.10

7. C->G 3/8 1/28 26 2.74 31. 17->8 2/10 1/28 13 2.6

8. G->C 2/8 1/28 26 4.16 32. 7->17 5/9 1/28 30 2.14

9. D->G 2/8 1/28 26 4.16 33. 17->7 2/9 2/28 30 9.74

10. G->D 1/8 1/28 26 8 34. 9->16 1/9 2/28 8 5.19

11. S->G 2/11 1/28 26 5.78 35. 16->9 1/9 2/28 8 5.09

12. G->S 1/9 1/28 26 9.45 36. 7->16 2/9 1/28 27 4.90

13. R->G 1/8 1/28 26 8.32 37. 9->13 3/9 3/28 8 2.67

14. G->R 4/8 1/28 26 2.08 38. 13->9 2/9 1/28 8 1.45

15. L->G 2/9 3/28 27 13.5 39. 13-

>12

2/6 2/28 6 1.30

16. G->L 3/9 1/28 27 3.27 40. 7->11 1/10 1/28 27 10.8

17. U->Q 2/6 1/28 8 0.97 41. 11-

>14

2/7 2/28 11 2.66

18. Q->U 1/6 1/28 8 1.89 42. 14-

>11

2/7 1/28 11 1.52

19. N->G 3/9 3/28 32 10.40 43. 14-

>20

2/6 1/28 10 1.21

20. G->N 2/9 1/28 32 5.82 44. 20-

>14

2/6 1/28 10 1.21

21. N->O 1/6 1/28 10 2.35 45. 5->15 1/8 2/28 8 4.40

22. O->N 2/6 1/28 10 1.21 46. 15->5 3/8 1/28 8 0.84

23. G->B 3/11 1/28 29 4.30 47. 2->8 3/12 1/28 12 1.92

24. B->E 2/10 2/28 11 3.93 48. 8->2 4/12 1/28 12 1.45

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

10

edge A->G is 1/28. The IF is determined by adding the IF complexity of class A and class G by

applying equation 3. The edge G->A has CS 2/11, as client class A is using data members Bank code

and TerminalID from server class G. The edge G->A is involved in cycle 1; hence its CW is 1/28 and

IF of edge G -> A is 24 + 2 = 26.

Table 3. Cyclic to Acyclic CDG of ATM Class Diagram
S.

No.

Edge

Removed

Weight of edge

removed

Cycles

Removed

S.

No.

Edge

Removed

Weight of edge

removed

Cycles

Removed

1. L->G 13.5 {5, 24, 27} G->B 4.30 {26}

2. A->G 11.56 {1} 16. G->C 4.16 {2}

3. G->K 10.8 {19} D->G 4.16 {3}

4. H->E 11.38 {6, 25} 17. B->E 3.93 {23, 26}

5. E->H 11.38 {6, 26} G->L 3.27 {5}

6. H->I 10.5 {16, 24} 18. H->Q 3.1 {17, 28}

7. G->F 10.4 {9} C->G 2.74 {2}

8. N->G 10.4 {11, 19, 25} 19. I->M 2.67 {22, 24, 27}

9. Q->G 9.74 {15, 17} 20. K->N 2.66 {14, 19}

10. G->S 9.45 {8} Q->H 2.60 {28}

 G->H 9.43 {16, 17, 24, 25} 21. N->O 2.35 {12}

11. J->G 8.32 {10} G->Q 2.14 {15}

12. R->G 8.32 {4} G->R 2.08 {4}

13. G->D 8.0 {3} 22. B->H 1.92 {7}

 G->N 5.82 {11} 23. Q->U 1.89 {18}

 S->G 5.78 {8} N->K 1.52 {14}

 G->A 5.78 {1} M->I 1.45 {22}

 F->G 5.2 {9} H->B 1.45 {7}

14. I->P 5.19 {16, 20} M->L 1.3 {24, 27}

 P->I 5.09 {20, 27} O->N 1.21 {12}

 G->P 4.90 {27} 24. N->T 1.21 {13}

15. E->O 4.40 {21, 25}

Table 3 shows that 24 dependencies are removed to make CDG acyclic. The edges highlighted bold in

Table 3 are neglected, as the cycles in which they are occurring have already been deleted. Resulting

acyclic CDG is shown in Figure 5.

Figure 5. An Acyclic CDG of ATM Class Diagram

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

11

Figure 6. Output of ATM Class Diagram

The experiment is performed on .Net framework using C sharp. In order to apply GA, we start with

an initial population of randomly generated test orders or individuals. For the test order involving

number of classes {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T and U}, a possible

chromosome sequence is {B, J, K, S, L, C, M, A, O, N, P, D, Q, G, I, U, H, T, E, S, F, R}. One point

crossover is applied to generate new individuals. The GA is run for 20 generations with an initial

population of 100 individuals.

The specific stubs in CDG of ATM system are L->G, A->G, G->K, H->E, E->H, H->I, G->F, N-

>G, Q->S, G->S, J->G, R->G, G->D, I->P, E->O, G->C, B->E, H->Q, I->M, K->N, N->O, B->H and

Q->U and N->T. The realistic stubs are C, D, E, F, G, H, I, K, M, N, O, P, Q, S, T, and U. The class C

is tested using stub G, class D is tested using stub G, class E is tested using stub B and stub H, class F

is tested using stub G, class G is tested using stubs A, J, N, Q and R, class H is tested using stubs E and

stub B. The specific stubs are twenty four and realistic stubs are sixteen in ATM case study. By

applying GA, results have shown that the class integration order GOKAQRNSCDJLFHTPUIEBM has

lowest weight of 1.1 among other individuals in the generations.

We applied topological sorting to derive integration test order. When a choice between vertices is

made, we use vertices ordering. For example, when a choice between vertices C and D is made, we

choose C. By applying topological ordering, the integration order for whole CDG is {G < A, J, N, Q,

R >,O < E, N >, K < G >, A , Q < H >, R, N < K >, S < Q , G >, C < G >, D < G > , J, L, F < G >, H <

E, B >, T < N >, P < I >, U < Q >, I < H >, E < H, B >, B, M < I >}.The real components to test stubs

are shown in bracket < >. The number of integration steps is 45. The number of steps is quite large

because of cyclic CDG. The integration cost of ATM system is 167.23, calculated by adding the weight

of the edges removed in order to make the CDG acyclic. The results of our ATM case study are shown

in the Figure 6. The graph plots the weight or fitness value of individuals in each generation. As the

number of generation increases, the fitness value of individuals starts decreasing.

6. Comparison of the Proposed Approach with Existing Techniques
In this section we perform a comparison of our proposed approach for solving CITO problem with

existing graph based and GA based techniques.

6.1 Comparison of Proposed Approach with Existing Graph based Approach
In Table 3, we have shown number of edges removed for converting cyclic CDG of ATM into

acyclic CDG. In this section, we are comparing graph based heuristic by Abduzarik’s [12] for breaking

cycles with our algorithm. The algorithm for breaking cycles in WORD by Abduzarik’s strategy is

shown in Figure 7.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

12

Figure 7. Abduzarik's Algorithm for eliminating cycles in WORD [12]

I. Table 4 shows the steps of breaking cycles by applying Aduzarik’s strategy. Remove cycle H->E

having CWR 25 and update CWR for remaining edges.

Table 4. Steps for converting Cyclic CDG into Acyclic CDG

II. Remove edge H->I having CWR 25 and update CWR for remaining edges. The Table 5 shows this

process.

Table 5. Steps for converting Cyclic CDG into Acyclic CDG after removing Edge H->E

S.

No.

Edge CS

(Weight)

Cycles

Removed

Number

of cycles

(NC)

Cycle to

weight

ratio

(CWR)

S.

No.

Edge CS

(Weight)

Cycles

Removed

Number

of cycles

(NC)

Cycle to

weight

ratio

(CWR)
1. A->G 0.09 {1} 1 11.11 25. E->B 0.4 {23} 1 2.5

2. G->A 0.18 {1 } 1 5.56 H->E 0.08 {6, 25} 2 25

3. F->G 0.2 {9} 1 5.0 26. E->H 0.08 {26} 1 12.5

4. G->F 0.1 {9} 1 10 27. G->H 0.46 {16, 17, 24} 3 6.52

5. J->G 0.13 {10} 1 7.69 28. H->I 0.08 {16, 24} 2 25

6. G->J 0.25 {10} 1 4.0 29. H->Q 0.3 {17, 28} 2 6.67

7. C->G 0.38 {2} 1 2.63 30. Q->H 0.2 {28} 1 5

8. G->C 0.25 {2} 1 4.0 31. G->Q 0.56 {15} 1 1.79

9. D->G 0.25 {3} 1 4.0 32. Q->G 0.22 {15, 17} 2 9.09

10. G->D 0.13 {3} 1 7.69 33. I->P 0.11 {16, 20} 2 18.18

11. S->G 0.18 {8} 1 5.56 34. P->I 0.11 {20, 27} 2 `18.18

12. G->S 0.11 {8} 1 9.09 35. G->P 0.22 {27} 1 4.55

13. R->G 0.13 {4} 1 7.69 36. I->M 0.33 {22, 24, 27} 3 9.09

14. G->R 0.5 {4} 1 2 37. M->I 0.22 {22} 1 4.55

15. L->G 0.22 {5, 24, 27} 3 13.64 38. M->L 0.33 {24, 27} 2 6.06

16. G->L 0.33 {5} 1 3.03 39. G->K 0.1 {19} 1 10

17. U->Q 0.33 {18} 1 3.03 40. K->N 0.29 {14, 19} 2 0.07

18. Q->U 0.17 {18} 1 5.88 41. N->K 0.29 {11} 1 3.45

19. N->G 0.33 {11, 19} 2 6.06 42. N->T 0.33 {13} 1 3.03

20. G->N 0.22 {11} 1 4.55 43. T->N 0.33 {13} 1 3.03

21. N->O 0.17 {12} 1 5.88 44. E->O 0.13 {21} 1 7.69

22. O->N 0.33 {12} 1 3.03 45. O->E 0.38 {21} 1 2.63

23. G->B 0.27 {26} 1 3.70 46. B->H 0.25 {7} 1 4.0

24. B->E 0.2 {23, 26} 2 10 47. H->B 0.33 {7} 1 3.03

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

13

III. For space reasons, all steps for breaking cycles are not shown. The order of dependencies deleted

after deleting H->E are P->I, E->H, A->G, G->F, G->K, Q->G, G->S, J->G, G->D, R->G, E->O, Q-

>U, N->O, Q->H, B->E, L->G, G->N, M->I, G->C, B->H, K->N and N->T. Hence, 24 dependencies

are removed to make graph acyclic.

The total number of dependencies removed from our proposed and graph based strategy [12] are

same. In our approach, dependencies removed to make CDG acyclic are different. In our proposed

approach, less computation effort is required as the edges are removed without recomputing weights

for all edges in CDG.

6.2 Comparison of Proposed Approach with existing GA based Approach
To compare our algorithm with GA based approach, we have applied our algorithm on the Briand’s

ATM case study. We have used the dependency tables [13] as shown in Figure 8.

S.

No.

Edge CS

(Weight)

Cycles

Removed

Number

of cycles

(NC)

Cycle to

weight

ratio

(CWR)

S.

No.

Edge CS

(Weight)

Cycles

Removed

Number

of cycles

(NC)

Cycle to

weight

ratio

(CWR)
1. A->G 0.09 {1} 1 11.11 25. E->B 0.4 {23} 1 2.5

2. G->A 0.18 {1 } 1 5.56 H->E 0.08 {6, 25} 2 25

3. F->G 0.2 {9} 1 5.0 26. E->H 0.08 {26} 1 12.5

4. G->F 0.1 {9} 1 10 27. G->H 0.46 {17} 1 2.17

5. J->G 0.13 {10} 1 7.69 H->I 0.08 {16, 24} 2 25

6. G->J 0.25 {10} 1 4.0 28. H->Q 0.3 {17, 28} 2 6.67

7. C->G 0.38 {2} 1 2.63 29. Q->H 0.2 {28} 1 5

8. G->C 0.25 {2} 1 4.0 30. G->Q 0.56 {15} 1 1.79

9. D->G 0.25 {3} 1 4.0 31. Q->G 0.22 {15, 17} 2 9.09

10. G->D 0.13 {3} 1 7.69 32. I->P 0.11 {20} 1 9.09

11. S->G 0.18 {8} 1 5.56 33. P->I 0.11 {20, 27} 2 `18.18

12. G->S 0.11 {8} 1 9.09 34. G->P 0.22 {27} 1 4.55

13. R->G 0.13 {4} 1 7.69 35. I->M 0.33 {22, 27} 2 6.06

14. G->R 0.5 {4} 1 2 36. M->I 0.22 {22} 1 4.55

15. L->G 0.22 {5, 27} 2 9.09 37. M->L 0.33 {27} 1 3.03

16. G->L 0.33 {5} 1 3.03 38. G->K 0.1 {19} 1 10

17. U->Q 0.33 {18} 1 3.03 39. K->N 0.29 {14, 19} 2 0.07

18. Q->U 0.17 {18} 1 5.88 40. N->K 0.29 {11} 1 3.45

19. N->G 0.33 {11, 19} 2 6.06 41. N->T 0.33 {13} 1 3.03

20. G->N 0.22 {11} 1 4.55 42. T->N 0.33 {13} 1 3.03

21. N->O 0.17 {12} 1 5.88 43. E->O 0.13 {21} 1 7.69

22. O->N 0.33 {12} 1 3.03 44. O->E 0.38 {21} 1 2.63

23. G->B 0.27 {26} 1 3.70 45. B->H 0.25 {7} 1 4.0

24. B->E 0.2 {23, 26} 2 10 46. H->B 0.33 {7} 1 3.03

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

14

 Figure 8. ATM Dependency Matrix. As = Association, Cp = Composition, Us = Use dependency, I

= Inheritance [13]

We have transformed dependency table shown in Figure 8 into CDG and identified thirty cycles which

are as follows:-

1. 8->9->8 16. 10->15->10

2. 8->10->8 17. 12->11->10->12

3. 10->9->8->10 18. 13->11->10->13

4. 10->11->8->10 19. 13->11->8->10->13

5. 10->11->9->8->10 20. 13->11->9->8->10->13

6. 10->12->8->10 21. 14->11->8->10->14

7. 10->13->8->10 22. 14->11->9->8->10->14

8. 10->14->10 23. 14->11->10->14

9. 10->14->8->10 24. 15->11->9->8->10->15

10. 10->15->8->10 25. 15->11->10->15

11. 10->12->9->8->10 26 .15->9->8->10->15

12. 10->13->9->8->10 27. 10->11->10

13. 10->14->9->8->10 28. 10->12->10

14. 10->15->9->8->10 29. 15->11->8->10->15

15. 10->13->10 30. 12->11->8->10->12

Table 6. Coupling measures for SCC (8, 9, 10, 11, 12, 13, 14, 15) [12]

Table 7. Edge Weights for SCC { 8, 9, 10, 11, 12, 13, 14, 15}
Edge D

(1)

of Attr. (2) # of Meth.

(3)

A &

M

(4)

A&M [12]

(5)

CS

(6)

CW IF Wi

(1)

Wi (2) Wi

(3)

Wi

(4)

Wi

(5)

Wi

(6)

8->9 1 13 1 0.71 1 1 0.03 9 0.27 0.02 0.27 0.38 0.27 0.27

8->10 1 9 2 0.53 1.22 7 0.7 20 14 1.56 7 26.41 11.48 2

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

15

9->8 1 13 7 1 1.17 6 0.4 17 6.8 0.52 0.97 6.8 5.81 1.13

10->8 1 13 7 1 1.66 15 0.03 22 0.66 0.05 0.09 0.66 0.40 0.044

10->9 1 13 2 0.74 1.13 4 0.03 21 0.63 0.05 0.315 0.85 0.56 0.16

10>11 1 0 0 0 1.57 12 0.1 21 2.1 - - - 1.34 0.18

10->12 1 2 2 0.23 1.13 3 0.17 18 3.06 1.53 1.53 13.30 2.71 1.02

10->13 1 2 2 0.23 1.13 3 0.2 18 3.6 1.8 1.8 15.65 3.19 1.2

10->14 1 3 2 0.26 1.13 3 0.2 18 3.6 1.2 1.8 13.85 3.19 1.2

10->15 1 1 2 0.21 1.13 3 0.23 18 4.14 4.14 2.07 19.71 3.66 1.38

11->8 1 13 2 0.74 1.17 6 0.13 17 2.21 0.17 1.11 2.99 1.89 0.37

11->9 1 13 1 0.71 1.00 1 0.13 16 2.08 0.21 2.72 3.83 2.72 2.08

11->10 1 9 2 0.53 1.13 3 0.13 21 2.73 0.30 1.37 5.15 2.42 0.91

12->8 1 13 4 0.81 1.60 19 0.03 14 0.42 0.03 0.11 0.52 0.26 0.02

12->9 1 13 4 0.81 2.59 19 0.03 13 0.39 0.03 0.10 0.48 0.15 0.02

12->10 1 9 2 0.53 2.01 5 0.03 18 0.54 0.06 Inf 1.01 0.27 0.11

12->11 1 Inf Inf Inf 5.00 5 0.03 13 0.39 Inf Inf Inf 0.08 0.08

13->8 1 13 4 0.77 1.50 14 0.03 14 0.42 0.03 0.11 0.52 0.28 0.03

13->9 1 13 4 0.77 2.62 22 0.03 13 0.39 0.03 0.10 0.48 0.19 0.02

13->10 1 9 2 0.53 2.01 5 0.03 18 0.54 0.06 0.27 1.07 0.27 0.11

13->11 1 Inf Inf Inf 5.00 5 0.1 13 1.3 Inf Inf Inf 0.26 0.26

14->8 1 13 3 0.74 1.39 12 0.03 14 0.42 0.03 0.14 0.55 0.30 0.04

14->9 1 13 3 0.77 2.58 19 0.03 13 0.39 0.03 0.13 0.51 0.15 0.02

14->10 1 9 2 0.43 2.01 5 0.03 18 0.54 0.06 0.27 1.01 0.27 0.11

14->11 1 Inf Inf Inf 5.00 5 0.1 13 1.3 Inf Inf Inf 0.26 0.26

15->8 1 13 2 0.74 1.29 10 0.03 14 0.42 0.03 0.21 0.57 0.33 0.04

15->9 1 13 3 0.77 2.58 17 0.03 13 0.39 0.03 0.13 0.51 0.15 0.02

15->10 1 9 2 0.53 2.01 5 0.03 18 0.54 0.06 0.27 1.01 0.27 0.11

15->11 1 Inf Inf Inf 5.00 5 0.1 13 1.3 Inf Inf Inf 0.26 0.26

Applying Tarjan’s algorithm, SCC identified is {8, 9, 10, 11, 12, 13, 14, and 15}. In Briand’s work,

edge weight is obtained from the four cost functions which are attributes coupling, method coupling,

number of broken dependencies and weighted geometric average of methods. Since the number of

attributes and methods in Briand’s ATM case study were not available to us, we have taken edge

weights same as provided in their work. We extracted the data from Abduzarik’s et. al. work [12] to

determine Briand’s number of broken dependencies (D (1)), attribute coupling (# of Attr (2)), method

coupling (# of Method.(3)), attributes and method coupling (A & M (4)) and attributes and method

coupling (A & M (5)) as shown in Table 7.

Using dependency table shown in Figure 8, we calculated IF complexity for each class in ATM case

study by applying equation 3. We calculated CS between two classes ci and cj for Wi (6) by adding five

parameters shown in Table 6 i.e. C. Vd. Md. Rd. Pd where, C is 5 for inheritance and composition

dependency and 1 for other dependencies, Vd is number of distinct public variables of cj directly used

by ci , Md is number of public methods of cj that are called by ci, Rd is number of distinct return typed

that occur in Md, Pd is number of distinct parameters that occur in Md [12]. CW is calculated in the

manner as explained in section 5. The number of broken dependencies (1), attribute coupling (2),

method coupling (3), attribute and method coupling (4) and attribute and method coupling (5) are used

to determine CS in our work. Applying equation 4, we have calculated Wi for six cost functions as

shown in Table 7. The results shows that for each cost function, 7 dependencies are removed (8->10, 9-

>8, 10->12, 10->13, 10->14, 10->15 and 11->10).

The stub cost for six cost functions are equal as the same set of dependencies were removed. In

section 6.1 and section 6.2, our illustrative case studies show that parameters i.e. CS, CW and IF as

depicted in our work are effective in determining the test order of minimum stub complexity.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

16

7. Comparison of GA based Proposed Approach with Micro-GA and Cuckoo

Search Algorithm

Table 8. Parameters for GA, Micro-GA and Cuckoo Search Algorithm
Parameters GA Micro-GA Cuckoo Search

Initial Population

Size 100 5

100

Selection Average weight = 12

Elitism

If Fitness new individual > Fitness old individual. Replace old

individual with new individual.

Crossover Probability Weight >Fitness Average, Crossover Probability = 75%

Weight < Fitness Average, Crossover Probability =

25%

100% for 4 leftover

individuals.

Mutation Probability Weight > Fitness Average, Mutation Probability = 25%

Weight< Fitness Average , Mutation Probability = 15%
----- Delete 20 worst individuals in each generation.

Table 9. Fitness value of Individuals

Micro-GA Cuckoo Search Algorithm GA

Gen
Average

Weight
Minimum Weight Gen Average Weight Minimum Weight Gen Average Weight Minimum Weight

1 15.794 6.03 1 12.2032 0.97 1 13.9159 1.1

2 10.288 5.52 2 11.8211 0.97 2 12.56237 1.1

3 8.906 3.96 3 10.8078 0.97 3 11.58508 1.1

4 8.88 3.96 4 10.5146 0.97 4 12.18 1.1

5 14.308 2.08 5 9.7183 0.97 5 12.174 1.1

6 11.364 2.08 6 9.4754 0.97 6 11.29393 1.1

7 11.784 2.08 7 9.5483 0.97 7 10.01045 1.1

8 5.332 2.08 8 9.2575 0.97 8 10.03789 1.1

9 9.892 1.45 9 9.7958 0.97 9 8.573077 1.1

10 12.422 1.45 10 9.2989 0.97 10 6.78 1.1

11 6.698 1.45 11 9.1869 0.97 11 4.978 1.1

12 10.644 1.45 12 8.9466 0.97 12 5.076667 1.1

13 12.224 1.45 13 9.0851 0.97 13 5.076667 1.1

14 10.724 1.45 14 9.5793 0.97 14 5.076667 1.1

15 7.662 1.45 15 9.424 0.97 15 1.1 1.1

16 9.024 0.84 16 9.3312 0.97 16 1.1 1.1

17 8.982 0.84 17 8.8746 0.97 17 1.1 1.1

18 7.928 0.84 18 9.0394 0.97 18 1.1 1.1

19 6.44 0.84 19 8.624 0.97 19 1.1 1.1

20 5.482 0.84 20 8.6242 0.97 20 1.1 1.1

21 11.812 0.84 21 8.1939 0.97 21 1.1 1.1

22 10.664 0.84 22 8.1224 0.97 22 1.1 1.1

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

17

Figure 9. GA, Micro-GA, and Cuckoo Search Algorithm results on Proposed Approach

We have applied GA, micro-GA and cuckoo search algorithm on ATM case study provided in

section 5. Table 8 shows different parameters values for GA, micro-GA and cuckoo search algorithm.

The average fitness value of individuals after applying GA, micro- GA and cuckoo search algorithm

are shown in Table 9. The average fitness value is determined by adding total fitness value of each

individual in current generation divided by total number of individuals. The graphical results of

applying GA, micro- GA and cuckoo search algorithm is shown in Figure 9 where X-axis plots the

number of generations and Y-axis plots the average fitness value. The average fitness value decreases

sharply by applying micro-GA but as there are a majority of new values in every generation; the results

vary and do not decrease with each generation. On applying cuckoo search algorithm, the average

fitness decreases but the results shows that initially, micro-GA outperforms GA and cuckoo search

algorithm. As the run time increases, GA gives better results compared to micro-GA and cuckoo search

algorithm.

For large case studies, GA gives better results than micro-GA and cuckoo search algorithm. It can

be concluded that micro-GA and cuckoo search algorithm gives better results for the small sized

problems or when the time constraint is limited.

8. Conclusion and Future Work
In this paper an approach is proposed to identify the test order having minimum cost by applying

GA. CS is used to capture intensity of interaction in terms of number of methods and attributes coupled

between client and server class. We have also compared the results of GA, micro-GA and cuckoo

search algorithm on our ATM case study. The empirical result shows that GA outperforms micro-GA

and cuckoo search algorithm for large sized problems. The proposed approach is effective for solving

problems where test order size is very large. The results of our proposed approach are as good as the

results produced by existing graph based and other GA based techniques, but the computation effort is

less with our proposed approach as compared to existing graph based approaches.

Limitation:-

 The test dependencies for realization, binding and extend relationship in UML class

diagram has not been investigated in our work.

 The proposed GA based approach is effective for large sized group of classes.

Our future work involves proposing a new cost effective technique using GA and graph based

approach. In future, we plan to analyze the test dependencies for realization, binding and extend

relationship .We will also compare our approach to other existing approaches. A tool is also being

developed to support this proposed approach.

References
[1] Pressman R. S., Software Engineering - A Practitioner's Approach, fourth ed., McGraw Hill, 2005.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

18

[2] Dr. Velur Rajappa, Arun Biradar, Satanik Panda, “Efficient software test case generation using

genetic algorithm based graph theory”, International conference on emerging trends in

Engineering and Technology, IEEE, pp.298-303, 2008.

[3] Timo Mantere, “Automatic software testing by genetic algorithms”, P.h.d thesis, University of

Vaasa, Finland, 2003, http://www.uwasa.fi/materiaali/pdf/isbn_952-476-003-7.pdf, accessed on

29.08.2012.

[4] Briand L. C., Labiche Y. and Wang Y., “An Investigation of Graph-Based Class Integration Test

Order Strategies,” IEEE TSE, Vol. 29 no. 7, pp. 594-607, 2003.

[5] Kraft N. A., Lloyd E. L., Malloy B. A., Clarke P. J., “The implementation of an extensible system

for comparison and visualization of class ordering methodologies”, Journal of systems and

software, Vol. 79 , no. 8, pp. 1092-1109, 2006.

[6] Yves Le Traon, Thierry Jeron, Jean-Marc Jezequel, and Pierre Morel, “Efficient object-oriented

integration and regression testing”, IEEE transactions on reliability, Vol. 49, no. 1,pp. 12-25, 2000.

[7] Priti Agarwal, Sangeeta Sabharwal, Parneeta Dhaliwal, “Integration test Order for C++

applications, Journal of computing”, pp. 61 – 67, 2010.

[8] Hla Myat Kaung, Nan Si Kham, Ni Lar Thein, “To visualize the coupling among the modules”,

Information and telecommunication technologies APSITT proceedings, IEEE, pp. 111-116, 2005.

[9] Vu Le Hanh, Kamel Akif, Yves Le Traon, Jean - Marc Jezequel, “Selecting an efficient OO

integration testing strategy: An experimental comparison of actual strategies”, 15
th

 European

conference on object- oriented programming, Springer, pp. 381-399, 2001.

[10] Mitchell. M., An introduction to Genetic algorithms, Cambridge, MA, MIT Press, 1996.

[11] Thierry Jeron, Jean-Marc Jezequel, Yves Le Traon, Pierre Morel, Efficient strategies for

integration and regression testing of OO systems In. 10
th

 international symposium on software

reliability engineering, IEEE, pp. 260-269, 1999.

[12] Aynur Abdurazik, Jeff Offutt, “Using coupling-based weights for the class integration and test

order problem”, The Computer Journal, Vol. 52, no. 5, pp. 557-570, 2009.

[13] Lionel C. Briand, Jie Feng, Yvan Labiche, “Experimenting with genetic algorithms and coupling

measures to devise optimal integration test orders”, Carleton University, technical report SCE -02-

03, October 2002, version 3, http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-02-03.pdf

[14] S. Raghavan, “A note on Eswaran and Tarjan’s algorithm for strong connectivity Augmentation

Problem”, http://www.terpconnect.umd.edu/~raghavan/preprints/stc.pdf, accessed on 26.08.2012

[15] K.C. Tai , F. Daniels, “Test orders for inter- class integration testing of object oriented software”,

21
st
 Annual international computer software and applications conference, IEEE computer society,

pp. 601 – 607, 1997

[16] Y.L. Traon, T. Jeron, J.M. Jezequel, P. Morel. “Efficient object oriented integration and

regression testing”, IEEE Transaction on Reliability, Vol. 49, 12-25, 2000.

[17] D. Kung, J. Gao, P.Hsia, Y. Toyoshima, and C. Chen, “A test strategy for object oriented

programs,” 19
th

 Computer Software and Application Conference, IEEE Computer Society, pp.

239-244, 1995.

[18] L. Briand, J. Feng, and Y. Labiche, “Using Genetic algorithms and coupling measures to devise

optimal integration test orders”, 14
th
 international conference on software engineering and

knowledge engineering, ACM, pp. 43-50, 2002.

[19] Bo Zhang and Chen Wang, “Automatic generation of test data for path testing by Adaptive

genetic

 simulated annealing algorithm”, International conference on computer science and automation

engineering, IEEE, pp. 38- 42, 2011.

[20] Erik Arisholm, Lionel C. Briand, Audun Foyen, “Dynamic Coupling Measurement for Object-

Oriented Software”, IEEE transactions on software engineering, Vol.30, no.8, pp. 491-506, 2004.

[21] X.S Yang and S. Deb, “Cuckoo Search via Levy Flights”, World congress on nature and

biologically inspired computing, Coimbatore, India, pp.210-214, 2009.

[22] X.S Yang and S. Deb, “Engineering optimization by cuckoo search”, International journal of

Mathematical modeling and numerical optimisation, vol.1, no.4, pp.330-343, 2010.

International Journal of

Soft Computing And Software Engineering (JSCSE)

e-ISSN: 2251-7545

Vol.3,No.12, 2013

Published online: Dec 25, 2013

DOI: 10.7321/jscse.v3.n12.1

19

[23] E. Valian et.a l., “Improved cuckoo search for reliability optimisation problems”, Computers and

Industrial Engineering,Elsevier, vol. 64, pp.459-469, 2013.

[24] Y. Quin et. al., “Application of Micro Genetic Algorithm to optimization of time domain Ultra

wide band Antenna Array”, International conference on microwave and millimeter wave

technology, IEEE, pp. 1-4, 2007.

[25] Carlos A. Coello and G. Pulido, “A Micro-Genetic Algorithm for Multiobjective optimization”,

Proceedings of the first international conference on evolutionary multi-criterion optimization, pp.

126-140, 2001.

[26] K. Krishankumar, “Micro-Genetic Algorithm for stationary and non-stationary function

optimization”, SPIE proceedings, intelligent control and adaptive systems, pp. 289-296, 1989.

[27] Aggarwal K.K., Singh Yogesh , Software Engineering, 3
rd

 ed., New Age International Publishers,

2007.

[28] Goldberg, D.E, Genetic Algorithms: in search, optimization and machine learning, Addison

Wesley, M.A, 1989.

