
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

720

A Probabilistic Approach to Discover Heterogeneous

Network Topologies

Kevin Fuchs
Heilbronn University, Data Center

Heilbronn, Germany

Email: kevin.fuchs@hs-heilbronn.de

Abstract—This paper introduces a new approach for the

automated discovery of heterogeneous network topologies. The

algorithm uses only information that is stored in the Address

Forwarding Tables (AFTs) of the network devices. There have

been different efforts to find an algorithmic solution using only

AFTs. This has always involved the problem that AFTs contain

incomplete information, which made it difficult to develop

efficient solutions. This paper describes a new probabilistic

method, for which the basis is the calculation of degrees to which

entries in the AFTs overlap. These overlap degrees are used to

calculate interconnection probabilities of network devices.

Finally the topology which is the most probable one is selected.

Although the search space may become extremely large, the

algorithm is pleasantly efficient.

Index Terms—topology discovery, heterogeneous networks, link

layer, overlap degrees of address sets, connection probabilities,

minimum spanning tree, Kruskal’s algorithm

I. INTRODUCTION

Managing modern computer networks involves many tasks
that can only be satisfyingly performed with knowledge about
the underlying topology of the network. Amongst others this
includes traffic analysis, load balancing and maintenance.
Networks often grow independently, which makes it a
Sisyphean task to document the network topology manually.
For this reason, automatic topology discovery has often been
an object of research. Some techniques use end-to-end-
measurements. The basic idea behind this is that—depending
on the inner structure of the network—there are measurable
correlations of network traffic at receivers [1] [2]. Protocols
like the Cisco Discovery Protocol (CDP) [3] and the Link
Layer Discovery Protocol (LLDP) [4] [5] can be used for
layer-2 topology discovery. There has also been work by Yuri
Breitbart et al. [6] [7] [8] and Bruce Lowekamp [9] on using
the information stored in the Address Forwarding Tables
(AFTs). In [8] Breitbart et al. introduce an algorithm that
provides an exact solution for topology discovery based on

information stored in the AFTs. They also prove that this
involves NP-Hardness.

The main objective of this study is the introduction of a
new approach using only AFT information. This algorithm
does not claim an exact solution. Instead it uses a more
efficient probabilistic method, based on overlap degrees
between AFTs. A good algorithmic solution should be as
independent from particular technologies as possible.
Furthermore, it should only use information that is easily
accessible on any device. The algorithm introduced in this
paper fulfills these requirements.

II. USING AFTS FOR TOPOLOGY DISCOVERY

End-to-end measurements and protocol-based topology
inference make clear assumptions about the way network
components transmit data through the network. Techniques
using end-to-end measurements are commonly based on
packet loss rates or delay measurements, detecting correlations
of network traffic to infer the topology [1] [2]. Protocol-based
techniques require accordant protocols to be implemented and
enabled on each network component. Therefore, both end-to-
end measurements and protocol-based solutions imply that the
network is based on a particular technology. However, an
algorithm using only AFT information would infer topologies
on a more abstract level.

A switched network can abstractly be described as a tree
structure each node of which is able to direct data to one of the
network segments that are connected to it. This is done
autonomously by each node, meaning that a single node only
knows in which network segment a particular destination is
located. It does not have any information about the other nodes
in the network or the network topology. When data is received
by a node it is directed to the network segment where the
desired destination is located. The data is sent to the next node
which again directs it to its follower node. This way data can
be routed from an end point to another one without the single
nodes being aware of the network topology. Note that this
describes a universal mechanism that is independent from any
technology the network is based on. To make this mechanism

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

721

work, every single node must have information about the
destinations that are located in the network segments it is
connected to. Therefore, the presence of AFTs or something
similar to them is always needed, no matter which technology
is used to build up the network. Consequently, if we can find
an algorithm using only AFT information, this will provide a
universal, technology-independent solution for the discovery of
switched network topologies.

Supposing all AFTs in the network are complete, the
topology can be inferred from the relationships between the
address sets that are associated with interfaces. Let Iij denote
the jth interface on the network device Si. There are two
possible ways to discover connections between devices by the
use of the AFTs.

a) Parent and child devices: A particular network device
Sc can be identified as the child of its parent device Sp if the
union of the address sets corresponding to all downlink
interfaces of Sc equates to the address set of the particular
downlink interface Ipj to which Sc is connected.

b) Unions and intersections: Breitbart et al. propose in [6]
that two interfaces Iij and Ikl of two different devices are
directly connected if the union of their address sets equates to
the set of all addresses that are present in the entire network
and if the intersection of the two sets is empty.

Point a) requires knowledge about the uplink ports on the
devices. This is because the union of all interfaces—uplink
and downlink interfaces—always reflects all addresses in the
entire network. Therefore, uplink ports must be excluded and
only downlink ports must be considered. On the contrary,
point b) does not imply any knowledge about uplinks and
downlinks.

As switches store addresses that appear frequently,
whereas they discard infrequent ones, we cannot rely on the
AFTs to be complete. This is the key problem of finding an
algorithmic solution using only AFTs. There has been work on
this topic for example by Bruce Lowekamp [9] and Yuri
Breitbart [6] [7] [8]. In [8] Breitbart et al. describe an
algorithm to solve the problem of incomplete AFTs stating it
as a NP-hard problem.

This paper introduces a new probabilistic approach to
solve the problem of incomplete AFTs. The AFTs may not be
complete but in general they overlap to a high degree. The key
of the approach is that we calculate this overlap degree and
use it as the basis for the calculation of connection
probabilities. This way we can search for the most probable
topology. Although the search space may be of huge size we
will see that the search can be implemented efficiently.

III. OVERLAP DEGREES OF AFTS

First of all we must find a measure to express the overlap
degree of two address sets. Fuzzy Logic provides a way to
calculate the subset degree of fuzzy sets. In the theory of fuzzy

sets an element is not necessarily said to be a member or not a
member of a set. Instead, such an element is assigned a
membership degree between Zero and One [10]. Referring to
[11], the degree to which a fuzzy set A is a subset of another
fuzzy set B is calculated with (1).

 (1)

[A] is called the size of A and is due to (2) with FA(x)
denoting the membership function of the fuzzy set A and x
denoting an element of A.

As an AFT either contains an address entry or not, address
sets are not fuzzy but classical sets. But the latter ones can be
interpreted as fuzzy sets with each member having the
membership degree One [12]. Therefore, the size of an
address set equates to the cardinality of it so that we can
simplify (1) to (3).

Equation (3) describes the overlap degree in the sense of
the subset degree. But what we actually need is the overlap
degree in the sense of the equality of two sets. As equality
means that one set is a subset of the other one and vice versa,
we can get the overlap degree by calculating the subset degree
in both directions, which equates to (4).

In section II, point a) describes a way to identify parent
and child devices. Based on this, we can calculate the overlap
degree of the address set associated with all downlink
interfaces of the device Sc and the address set of the interface
Ipj , to which Sc—or, more precise, the uplink interface of Sc—
is connected. In the following, we use this approach for the
calculation of overlap degrees and connection probabilities.
Obviously this implies that we know the uplink port of the
device Sc. Therefore, in addition, section IX will explain the
calculation of overlap degrees using the approach of point b)
in section II, which does not imply any knowledge about
uplinks and downlinks.

There are two different types of address sets to consider:
sets according to single interfaces and sets corresponding to
network devices. In the following we use the same notation
for address sets as for the network devices and interfaces they
correspond to. In example, let Si denote the address set
associated with a network device and let Iix represent the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

722

address set of the xth downlink interface of the device Si. The
address set Si is the same as the union of all its downlink
address sets Iix. In (5) Xi denotes the set of downlink interfaces
of the device Si.

This way we can calculate the degree to which the address
set of a device Si overlaps with the address set of the interface
Ijk of another device Sj. Referring to (4), the overlap degree
O(Si, Ijk) is calculated with (6).

IV. CONNECTION PROBABILITIES

In order to compute the probability with which a network
device Si is connected to an interface Ijk of another device Sj all
possible connections for the device Si must be considered.
Therefore, the connection probability P(Si, Ijk) is calculated by
normalizing the overlap degree O(Si, Ijk) by the sum of the
overlap degrees of all possible connections to this device.
Connections connecting a device with itself are excluded. Let
M be the total number of network devices, let Nm be the
number of downlink interfaces on a specific device Sm and let
I01 be the root of the network—treated as virtual interface.
Then the connection probability is calculated with (7).

Figure 1 shows a possible topology of a network

consisting of three switches each of them having two

downlink interfaces. I01 represents the virtual root interface.

Fig. 1: network with three switches

According to (7), the probability of S1 being connected to

I22 equates to (8).

V. TOPOLOGY PROBABILITIES

Let M denote the number of all network devices in the

entire network, and let Ikmlm be the target interface of the parent

device, to which the child device Sm is connected. According

to (9), the probability for a complete topology equates to the

product of all connection probabilities belonging to this

topology.

 (9)

In example, the topology probability of the network shown

in figure 1 is equal to (10).

 (10)

VI. SEARCH ALGORITHM

In the previous sections, we have explained how the

probability of a potential topology can be calculated.

Discovering the most probable topology means that we have

to search for it among all possible topologies. Depending on

the number of network devices and active interfaces, the

search space is expected to become extremely large.

Nevertheless, the following remarks show, that even the use of

a simple backtracking algorithm is surprisingly efficient.

Additionally, in section VIII we discuss the use of Kruskal’s

algorithm which provides a far more efficient solution.

A. Search Tree The search space is represented by a search

tree, the construction of which is illustrated by the means of

the example network shown in figure 1. A partial view of the

according search tree is shown in figure 2.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

723

Fig. 2: seaarch tree

The layers of the tree represent the network devices the

ordering of which may be arbitrary. The nodes are each

allocated an interface Iij the device may be connected to. This

way, every possible connection between two devices is

equivalent to an edge in the search tree. Furthermore, every

single possible topology is represented by a certain branch in

the tree, so is the example topology in figure 1 which is

represented by the marked branch in figure 2.

B. Backtracking Algorithm Let M be the number of

network devices and let N be the number of all downlink

interfaces on all devices including the virtual root interface.

Then the number of tree nodes is calculated with (11).

The example network in figure 1 leads to a search tree

with 399 nodes (M = 3, N = 7). For example, a network

consisting of seven devices and overall 70 interfaces will

create a search tree with the size of about 8000 billion nodes.

Therefore, the use of heuristics is inevitable in order to narrow

the search space. Despite the huge size of the search space, we

implemented a heuristic search based on a simple

backtracking algorithm [13]. This implied using a heuristic

condition to tell the search algorithm, when to leave the

current search direction and try another one. This condition

was easy to find as the search tree has some characteristic

properties that can be utilized. The probability of a topology is

due to the product of the connection probabilities

corresponding to the edges of the branch representing this

topology. Because all connection probabilities are smaller than

or equal to one, the product of them will decrease the deeper a

branch is traversed. We stored the highest probability we had

found in a previously traversed branch. When we recognized

at a particular level of the current branch that the product of

connection probabilities had become smaller than the

previously best result we skipped the search for the current

branch and continued with another one.

VII. TESTING

We used SNMP requests [14] [15] to retrieve AFT

information and stored it in a database. The address data might

also be retrieved using the telnet protocol [16]. Both SNP and

Telnet are supported by almost all network devices which

satisfies the condition that an algorithm should only use

information that is easily available.

The experimental arrangement consisted of twelve

switches and 30 to 60 hosts. Seven to eight of the twelve

switches were used to form the topology of the test network.

The other switches were used to bundle several hosts to

networks. Overall we made thirty different tests comprising

flat and deep topologies as well as mixed structures. This

included topologies which cannot be guaranteed to be

discoverable. These are topologies with several network

devices connected in series with none of them having more

than one active downlink interface. See figure 3, the devices

S2 and S3 are connected in series, both of them having only one

active downlink interface. The address sets of the interfaces

I11, I21 and I31 as well as the sets corresponding to S2, S3 and

S4, are nearly the same (“nearly” means that the AFT of a

switch also contains the network address of its neighbor

switch). In such cases, in the discovered topology, the devices

connected in series may be swapped.

Fig. 3: ambiguous topology

Except for these special topologies 100 per cent of all tests

succeeded. Moreover, the “naive” approach to use a simple

backtracking algorithm was pleasantly efficient. The

backtracking algorithm included counters for nodes that were

processed and nodes that were skipped. Although the size of

the search tree grew massively with increasing number of

interfaces, the search algorithm had to process just a few

thousand nodes compared to billions or even 1000 billions of

nodes the entire search tree consisted of. The reason for this is

the way the overlap degrees are distributed. Addresses that are

located in a particular branch of the network will not appear in

another branch. Therefore, the majority of the computed

overlap degrees and the corresponding connection

probabilities are zero or nearly zero, which makes the

backtracking algorithm skip large subtrees.

VIII. KRUSKAL’S ALGORITHM

The backtracking algorithm was implemented with an

optional cycle detector in order to predict connections that

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

724

would cause a cycle in the topology. This way, the

corresponding connection probabilities could be assigned zero

during the backtracking process. The tests showed that the

topology discovery worked in both cases—with or without

cycle detection. But it emerged that cycle detection has a

positive impact on reliability. While constructing the search

tree, this increases the belief in non-cyclic topologies as the

weights of their probabilities become higher.

If cycles are to be eliminated right from the beginning, the

underlying problem amounts to what is known as the

Minimum Spanning Tree Problem (MSTP) which is a subject

matter of algorithmic graph theory and belongs to the most

discussed problems in computer science [17]. The MSTP is

about finding a path connecting a set of nodes such that the

path forms a spanning tree with minimum cost. The edges

between the nodes are given weights. A spanning tree of

minimal cost then equates to a graph with the sum of its edge

weights being as small as possible. The first one to find an

efficient algorithmic solution for the MSTP was Otakar

Boruvka in 1926 [18]. However, the two most famous

algorithms were published by Joseph B. Kruskal [19] and

Robert C. Prim [20], who referenced Boruvka. The following

focuses on Kruskal’s algorithm, proposing an idea how to use

it in order to find the topology with the highest probability.

Boruvka’s, Prim’s and Kruskal’s algorithm belong to the

group of greedy algorithms. Greedy means that subsequently

choosing a local optimum also leads to a global optimum [21].

In the case of the MSTP, the global optimum is a subset of

edges connecting all nodes, whereby the sum of the edge

weights is minimal. This condition can be satisfied by sorting

all edges by their weights and selecting incrementally the

smallest remaining edge until all nodes are connected. This is

the basic approach of Kruskal’s algorithm. In addition,

Kruskal adds a new edge only if it does not create cycles in

the graph. Accordingly, the complexity of the algorithm is

determined by the sorting function and the cycle detection

algorithm. An efficient way to implement cycle detection for

Kruskal’s algorithm is the union-find data structure [22], with

which the complexity of Kruskal’s algorithm is O(m log(n))

with m denoting the number of edges and n being the number

of nodes [21]. In our case the edge weights are the connection

probabilities. The global optimum therefore does not equate to

the minimum sum but to the maximum product of the edge

weights which in turn is equivalent to the maximum topology

probability. The following is a suggestion how a slight

modification of Kruskal’s algorithm might be used instead of

backtracking.

1) Create a trivial graph consisting only of nodes

representing the network components Si and no edges.

2) Sort all possible connections by their probabilities in

descending order.

3) As long as not all network components have been

connected, repeat the following steps:

a) Take the connection (Si, Ijk) with the highest

probability and delete it from the list.

b) Discard the connection if

 it creates a cycle or

 Si has already been connected or

 Ijk has already been connected

Otherwise, add the connection to the graph.

IX. EXCLUDING UPLINK INTERFACES

Until now we have connected network devices Sc with the

interfaces Ipj of potential parent devices Sp. This has been done

silently implying that the uplink interface of Sc is known.

Searching for the interface containing the address of the

network root (e.g. the central router) has worked well in

practice to identify the uplink port of a device. However, Yuri

Breitbart et al. propose in [6] that two interfaces Iij and Ikl are

directly connected if the union of their address sets contains

all addresses occurring in the entire network and if the

intersection of Iij and Ikl is empty. But the address tables of the

interfaces must be complete to make this approach work. In

[6] they design a solution based on forcing the AFTs to

update. Furthermore, they collect data from the AFTs over a

long time period. In [8] they propose an algorithmic solution

for topology inference with incomplete AFTs, stating it as a

NP-hard problem. But they do not use any probabilistic

methods. Instead of calculating overlap degrees based on the

relationship between parent and child devices, the following

could be done: Let Iij and Ikl be two interfaces of interest, and

let Q denote the set of addresses occurring in the entire

network, which equates to the union of all interfaces on all

devices. Then, in reference to (4) we can calculate the overlap

degree of Iij ∪ Ikl and Q with (12).

 (12)

Equally—for the intersection of Iij and Ikl —we can calculate

the non-overlap degree for the interfaces Iij and Ikl with (13).

 (13)

Combining these two overlap degrees leads to (14).

 (14)

The overlap degree Ocomb now builds the new basis for the

construction of connection probabilities. Finally these

probabilities again can be used to search for the most probable

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco, CA, U.S.A., March 1-2, 2013

Doi: 10.7321/jscse.v3.n3.109 e-ISSN: 2251-7545

725

topology in the same way described in the previous sections.

This means that only the address sets used for the calculation

of overlap degrees are changed and the basic approach is not

affected. The difference is that it is no longer necessary to

distinguish uplink interfaces from downlink interfaces.

X. LIMITATIONS AND FUTURE WORK

This paper does not introduce a complete topology

discovery mechanism for multi-subnet networks. It only

considers topologies of a single subnet in a switched domain.

Future work may therefore include the question how this

algorithm can be extended to multi-subnets.

Even though the author drafted the use of Kruskal’s

algorithm, the purpose of this paper does not include

providing the most efficient search algorithm. For this reason,

future work should also include the implementation of a more

efficient search algorithm whereby Kruskal’s algorithm might

be an obvious solution as explained in section VIII.

As outlined in section IX the calculation of connection

probabilities should also be improved so that uplink interfaces

do not need to be excluded. Furthermore, future work should

contain testing the algorithm on larger networks.

XI. CONCLUSION

In contrast to end-to-end measurements and protocol-based

solutions the use of AFT information can provide algorithmic

solutions that are independent from the technologies that

networks are based on. The incompleteness of AFTs is a key

problem of this approach. This paper introduces a probabilistic

algorithm considering incomplete information as a natural part

of the problem. Instead of solving the problem exactly we

content ourselves with probabilistic results.

The algorithm works with heterogeneous networks, it is

technology-independent, it produces low error rates and it can

be implemented efficiently. The main purpose of this paper is

to solve the problem of incomplete AFTs by the calculation of

overlap degrees. The author has shown that this approach can

be used to implement a reliable and efficient algorithm for the

discovery of heterogeneous network topologies. Therefore,

this paper provides a small but meaningful piece in the field of

topology discovery.

ACKNOWLEDGMENT

This work was created at the data center of the Constance

University of Applied Sciences. The author would like to give

special thanks to the data center staff for their support.

REFERENCES

[1] M. Coates, M. Rabbat, R. Nowak, Merging Logical Topologies Using
End-to-End Measurements. 2003

[2] N. G. Duffield, J. Horowitz, F. Lo Prestis Adaptive Multicast Topology

Inference. In Infocom 2001. Twentieth Annual Joint Conference of the
IEEE No. 3, pp 1663–1645, 2001

[3] S. R. Rodriguez, Topology Discovery Using Cisco Discovery Protocol.

2009
[4] V. Attar and P. Chandwadkar, Network Discovery Protocol LLDP and

LLDP-MED.

[5] I. Schafer and M. Felser, Topology Discovery in PROFINET. Engineering
and Information Technology, Berne University of Applied Sciences

[6] Y. Breitbart, M. Garofalakis, B. Jai, C. Martin, R. Rastogi, A.

Silberschatz Topology Discovery in Heterogeneous IP Networks: the
NetInventory System. In IEEE/ACM Transactions on Networking No.3,

pp. 401–414, 2004

[7] Y. Breitbart, H. Gobjuka Discovering Network Topology of Large
Multisubnet Ethernet Networks. In 32nd IEE Conference on Local

Computer Networks No.3, pp. 428–435, 2007
[8] H. Gobjuka, Y. Breitbart, Ethernet Topology Discovery for Networks with

Incomplete Information. In 16th International Conference on Computer

Communications and Networks, pp. 631–638, 2007
[9] B. Lowekamp, D. R. O’Hallaron, T. R. Gross Topology Discovery for

Large Ethernet Networks SIGCOMM ’01 Proceedings of the 2001

Conference on Applications, Technologies, Architectures and Protocols
for Computer Communications, New York, 2001

[10] L. A. Zadeh, Fuzzy Logic. University of California, Berkeley, 1989

[11] B. Demant, Fuzzy-Theorie oder die Faszination des Vagen.
Braunschweig, Vieweg, 1993

[12] H. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems.

Boston, Kluwer, 1993
[13] R. J. Walker, An Enumerative Technique for a Class of Combinatorial

Problems. In Proc. AMS Symp. Appl. Math., Vol. 10, p. 91–94, 1960

[14] J. Case et al., RFC 1157: A Simple Network Management Protocol
(SNMP). 1999

[15] K. McCloghrie and M. Rose, RFC 1213: Management Information Base

for Network Management of TCP/IP-based Internets: MIB-II. 1991
[16] J. Postel and J. Reynolds, RFC 854: telnet protocol specification. 1983

[17] R. L. Graham, P. Hell, On the History of the Minimum Spanning Tree

Problem. Burnaby: Simon Fraser University, School of Computing
Science, 1982

[18] O. Boruvka J. Nešetřil, E. Milková, H. Nešetřilová, Otakar Boruvka on

Minimum Spanning Tree Problem (Translation of the Both 1926 Papers,
Comments, History). Praha, Charles University

[19] J. Kruskal, On the Shortest Spanning Subtree of a Graph and the

Travelling Salesman Problem In Proc. Amer. Math. Soc. No. 7(1956), pp.
48–50,1955

[20] R. Prim, Shortest Connection Networks and Some Generalizations. In

Bell System Technical Journal No. 36, pp. 1389–1401, 1957
[21] J. Kleinberg and E. Tardos, Algorithm Design. Boston, Pearson/Addison-

Wesley, 2006

[22] D. Z. Pan, and Z. B. Liu, X. F. Ding, Q. Zheng, The Application of

Union-Find Sets in Kruskal Algorithm, In International Conference on

Artificial Intelligence and Computational Intelligence AICI ’09, pp. 159–

162, 2009

