
                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco, CA, U.S.A., March 1-2, 2013 

Doi: 10.7321/jscse.v3.n3.109                     e-ISSN: 2251-7545 

 

 

720 

 

A Probabilistic Approach to Discover Heterogeneous 

Network Topologies 
 

Kevin Fuchs 
Heilbronn University, Data Center 

Heilbronn, Germany 

Email: kevin.fuchs@hs-heilbronn.de 

 

 

Abstract—This paper introduces a new approach for the 

automated discovery of heterogeneous network topologies. The 

algorithm uses only information that is stored in the Address 

Forwarding Tables (AFTs) of the network devices. There have 

been different efforts to find an algorithmic solution using only 

AFTs. This has always involved the problem that AFTs contain 

incomplete information, which made it difficult to develop 

efficient solutions. This paper describes a new probabilistic 

method, for which the basis is the calculation of degrees to which 

entries in the AFTs overlap. These overlap degrees are used to 

calculate interconnection probabilities of network devices. 

Finally the topology which is the most probable one is selected. 

Although the search space may become extremely large, the 

algorithm is pleasantly efficient. 

Index Terms—topology discovery, heterogeneous networks, link 

layer, overlap degrees of address sets, connection probabilities, 

minimum spanning tree, Kruskal’s algorithm 

I.  INTRODUCTION 

Managing modern computer networks involves many tasks 
that can only be satisfyingly performed with knowledge about 
the underlying topology of the network. Amongst others this 
includes traffic analysis, load balancing and maintenance. 
Networks often grow independently, which makes it a 
Sisyphean task to document the network topology manually. 
For this reason, automatic topology discovery has often been 
an object of research. Some techniques use end-to-end-
measurements. The basic idea behind this is that—depending 
on the inner structure of the network—there are measurable 
correlations of network traffic at receivers [1] [2]. Protocols 
like the Cisco Discovery Protocol (CDP) [3] and the Link 
Layer Discovery Protocol (LLDP) [4] [5] can be used for 
layer-2 topology discovery. There has also been work by Yuri 
Breitbart et al. [6] [7] [8] and Bruce Lowekamp [9] on using 
the information stored in the Address Forwarding Tables 
(AFTs). In [8] Breitbart et al. introduce an algorithm that 
provides an exact solution for topology discovery based on 

information stored in the AFTs. They also prove that this 
involves NP-Hardness. 

The main objective of this study is the introduction of a 
new approach using only AFT information. This algorithm 
does not claim an exact solution. Instead it uses a more 
efficient probabilistic method, based on overlap degrees 
between AFTs. A good algorithmic solution should be as 
independent from particular technologies as possible. 
Furthermore, it should only use information that is easily 
accessible on any device. The algorithm introduced in this 
paper fulfills these requirements. 

II. USING AFTS FOR TOPOLOGY DISCOVERY 

End-to-end measurements and protocol-based topology 
inference make clear assumptions about the way network 
components transmit data through the network. Techniques 
using end-to-end measurements are commonly based on 
packet loss rates or delay measurements, detecting correlations 
of network traffic to infer the topology [1] [2]. Protocol-based 
techniques require accordant protocols to be implemented and 
enabled on each network component. Therefore, both end-to-
end measurements and protocol-based solutions imply that the 
network is based on a particular technology. However, an 
algorithm using only AFT information would infer topologies 
on a more abstract level.  

A switched network can abstractly be described as a tree 
structure each node of which is able to direct data to one of the 
network segments that are connected to it. This is done 
autonomously by each node, meaning that a single node only 
knows in which network segment a particular destination is 
located. It does not have any information about the other nodes 
in the network or the network topology. When data is received 
by a node it is directed to the network segment where the 
desired destination is located. The data is sent to the next node 
which again directs it to its follower node. This way data can 
be routed from an end point to another one without the single 
nodes being aware of the network topology. Note that this 
describes a universal mechanism that is independent from any 
technology the network is based on. To make this mechanism 
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work, every single node must have information about the 
destinations that are located in the network segments it is 
connected to. Therefore, the presence of AFTs or something 
similar to them is always needed, no matter which technology 
is used to build up the network. Consequently, if we can find 
an algorithm using only AFT information, this will provide a 
universal, technology-independent solution for the discovery of 
switched network topologies. 

Supposing all AFTs in the network are complete, the 
topology can be inferred from the relationships between the 
address sets that are associated with interfaces. Let Iij denote 
the jth interface on the network device Si. There are two 
possible ways to discover connections between devices by the 
use of the AFTs. 

a) Parent and child devices: A particular network device 
Sc can be identified as the child of its parent device Sp if the 
union of the address sets corresponding to all downlink 
interfaces of Sc equates to the address set of the particular 
downlink interface Ipj to which Sc is connected. 

b) Unions and intersections: Breitbart et al. propose in [6] 
that two interfaces Iij and Ikl of two different devices are 
directly connected if the union of their address sets equates to 
the set of all addresses that are present in the entire network 
and if the intersection of the two sets is empty. 

Point a) requires knowledge about the uplink ports on the 
devices. This is because the union of all interfaces—uplink 
and downlink interfaces—always reflects all addresses in the 
entire network. Therefore, uplink ports must be excluded and 
only downlink ports must be considered. On the contrary, 
point b) does not imply any knowledge about uplinks and 
downlinks. 

As switches store addresses that appear frequently, 
whereas they discard infrequent ones, we cannot rely on the 
AFTs to be complete. This is the key problem of finding an 
algorithmic solution using only AFTs. There has been work on 
this topic for example by Bruce Lowekamp [9] and Yuri 
Breitbart [6] [7] [8]. In [8] Breitbart et al. describe an 
algorithm to solve the problem of incomplete AFTs stating it 
as a NP-hard problem. 

This paper introduces a new probabilistic approach to 
solve the problem of incomplete AFTs. The AFTs may not be 
complete but in general they overlap to a high degree. The key 
of the approach is that we calculate this overlap degree and 
use it as the basis for the calculation of connection 
probabilities. This way we can search for the most probable 
topology. Although the search space may be of huge size we 
will see that the search can be implemented efficiently. 

III. OVERLAP DEGREES OF AFTS 

First of all we must find a measure to express the overlap 
degree of two address sets. Fuzzy Logic provides a way to 
calculate the subset degree of fuzzy sets. In the theory of fuzzy 

sets an element is not necessarily said to be a member or not a 
member of a set. Instead, such an element is assigned a 
membership degree between Zero and One [10]. Referring to 
[11], the degree to which a fuzzy set A is a subset of another 
fuzzy set B is calculated with (1).  

  (1) 

[A] is called the size of A and is due to (2) with FA(x) 
denoting the membership function of the fuzzy set A and x 
denoting an element of A. 

   

As an AFT either contains an address entry or not, address 
sets are not fuzzy but classical sets. But the latter ones can be 
interpreted as fuzzy sets with each member having the 
membership degree One [12]. Therefore, the size of an 
address set equates to the cardinality of it so that we can 
simplify (1) to (3). 

   

Equation (3) describes the overlap degree in the sense of 
the subset degree. But what we actually need is the overlap 
degree in the sense of the equality of two sets. As equality 
means that one set is a subset of the other one and vice versa, 
we can get the overlap degree by calculating the subset degree 
in both directions, which equates to (4). 

   

In section II, point a) describes a way to identify parent 
and child devices. Based on this, we can calculate the overlap 
degree of the address set associated with all downlink 
interfaces of the device Sc and the address set of the interface 
Ipj , to which Sc—or, more precise, the uplink interface of Sc—
is connected. In the following, we use this approach for the 
calculation of overlap degrees and connection probabilities. 
Obviously this implies that we know the uplink port of the 
device Sc. Therefore, in addition, section IX will explain the 
calculation of overlap degrees using the approach of point b) 
in section II, which does not imply any knowledge about 
uplinks and downlinks. 

There are two different types of address sets to consider: 
sets according to single interfaces and sets corresponding to 
network devices. In the following we use the same notation 
for address sets as for the network devices and interfaces they 
correspond to. In example, let Si denote the address set 
associated with a network device and let Iix represent the 
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address set of the xth downlink interface of the device Si. The 
address set Si is the same as the union of all its downlink 
address sets Iix. In (5) Xi denotes the set of downlink interfaces 
of the device Si. 

   

This way we can calculate the degree to which the address 
set of a device Si overlaps with the address set of the interface 
Ijk of another device Sj. Referring to (4), the overlap degree 
O(Si, Ijk) is calculated with (6). 

   

IV. CONNECTION PROBABILITIES 

In order to compute the probability with which a network 
device Si is connected to an interface Ijk of another device Sj all 
possible connections for the device Si must be considered. 
Therefore, the connection probability P(Si, Ijk) is calculated by 
normalizing the overlap degree O(Si, Ijk) by the sum of the 
overlap degrees of all possible connections to this device. 
Connections connecting a device with itself are excluded. Let 
M be the total number of network devices, let Nm be the 
number of downlink interfaces on a specific device Sm and let 
I01 be the root of the network—treated as virtual interface. 
Then the connection probability is calculated with (7). 

  

Figure 1 shows a possible topology of a network 

consisting of three switches each of them having two 

downlink interfaces. I01 represents the virtual root interface. 

 

Fig. 1: network with three switches 

According to (7), the probability of S1 being connected to 

I22 equates to (8). 

  

V. TOPOLOGY PROBABILITIES 

Let M denote the number of all network devices in the 

entire network, and let Ikmlm be the target interface of the parent 

device, to which the child device Sm is connected. According 

to (9), the probability for a complete topology equates to the 

product of all connection probabilities belonging to this 

topology. 

  (9)  

In example, the topology probability of the network shown 

in figure 1 is equal to (10). 

  (10) 

VI. SEARCH ALGORITHM 

In the previous sections, we have explained how the 

probability of a potential topology can be calculated. 

Discovering the most probable topology means that we have 

to search for it among all possible topologies. Depending on 

the number of network devices and active interfaces, the 

search space is expected to become extremely large. 

Nevertheless, the following remarks show, that even the use of 

a simple backtracking algorithm is surprisingly efficient. 

Additionally, in section VIII we discuss the use of Kruskal’s 

algorithm which provides a far more efficient solution. 

A. Search Tree The search space is represented by a search 

tree, the construction of which is illustrated by the means of 

the example network shown in figure 1. A partial view of the 

according search tree is shown in figure 2.  
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Fig. 2: seaarch tree 

The layers of the tree represent the network devices the 

ordering of which may be arbitrary. The nodes are each 

allocated an interface Iij the device may be connected to. This 

way, every possible connection between two devices is 

equivalent to an edge in the search tree. Furthermore, every 

single possible topology is represented by a certain branch in 

the tree, so is the example topology in figure 1 which is 

represented by the marked branch in figure 2. 

B. Backtracking Algorithm Let M be the number of 

network devices and let N be the number of all downlink 

interfaces on all devices including the virtual root interface. 

Then the number of tree nodes is calculated with (11). 

   

The example network in figure 1 leads to a search tree 

with 399 nodes (M = 3, N = 7). For example, a network 

consisting of seven devices and overall 70 interfaces will 

create a search tree with the size of about 8000 billion nodes. 

Therefore, the use of heuristics is inevitable in order to narrow 

the search space. Despite the huge size of the search space, we 

implemented a heuristic search based on a simple 

backtracking algorithm [13]. This implied using a heuristic 

condition to tell the search algorithm, when to leave the 

current search direction and try another one. This condition 

was easy to find as the search tree has some characteristic 

properties that can be utilized. The probability of a topology is 

due to the product of the connection probabilities 

corresponding to the edges of the branch representing this 

topology. Because all connection probabilities are smaller than 

or equal to one, the product of them will decrease the deeper a 

branch is traversed. We stored the highest probability we had 

found in a previously traversed branch. When we recognized 

at a particular level of the current branch that the product of 

connection probabilities had become smaller than the 

previously best result we skipped the search for the current 

branch and continued with another one. 

VII. TESTING 

We used SNMP requests [14] [15] to retrieve AFT 

information and stored it in a database. The address data might 

also be retrieved using the telnet protocol [16]. Both SNP and 

Telnet are supported by almost all network devices which 

satisfies the condition that an algorithm should only use 

information that is easily available. 

The experimental arrangement consisted of twelve 

switches and 30 to 60 hosts. Seven to eight of the twelve 

switches were used to form the topology of the test network. 

The other switches were used to bundle several hosts to 

networks. Overall we made thirty different tests comprising 

flat and deep topologies as well as mixed structures. This 

included topologies which cannot be guaranteed to be 

discoverable. These are topologies with several network 

devices connected in series with none of them having more 

than one active downlink interface. See figure 3, the devices 

S2 and S3 are connected in series, both of them having only one 

active downlink interface. The address sets of the interfaces 

I11, I21 and I31 as well as the sets corresponding to S2, S3 and 

S4, are nearly the same (“nearly” means that the AFT of a 

switch also contains the network address of its neighbor 

switch). In such cases, in the discovered topology, the devices 

connected in series may be swapped.  

 

Fig. 3: ambiguous topology 

Except for these special topologies 100 per cent of all tests 

succeeded. Moreover, the “naive” approach to use a simple 

backtracking algorithm was pleasantly efficient. The 

backtracking algorithm included counters for nodes that were 

processed and nodes that were skipped. Although the size of 

the search tree grew massively with increasing number of 

interfaces, the search algorithm had to process just a few 

thousand nodes compared to billions or even 1000 billions of 

nodes the entire search tree consisted of. The reason for this is 

the way the overlap degrees are distributed. Addresses that are 

located in a particular branch of the network will not appear in 

another branch. Therefore, the majority of the computed 

overlap degrees and the corresponding connection 

probabilities are zero or nearly zero, which makes the 

backtracking algorithm skip large subtrees.  

VIII. KRUSKAL’S ALGORITHM 

The backtracking algorithm was implemented with an 

optional cycle detector in order to predict connections that 
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would cause a cycle in the topology. This way, the 

corresponding connection probabilities could be assigned zero 

during the backtracking process. The tests showed that the 

topology discovery worked in both cases—with or without 

cycle detection. But it emerged that cycle detection has a 

positive impact on reliability. While constructing the search 

tree, this increases the belief in non-cyclic topologies as the 

weights of their probabilities become higher. 

If cycles are to be eliminated right from the beginning, the 

underlying problem amounts to what is known as the 

Minimum Spanning Tree Problem (MSTP) which is a subject 

matter of algorithmic graph theory and belongs to the most 

discussed problems in computer science [17]. The MSTP is 

about finding a path connecting a set of nodes such that the 

path forms a spanning tree with minimum cost. The edges 

between the nodes are given weights. A spanning tree of 

minimal cost then equates to a graph with the sum of its edge 

weights being as small as possible. The first one to find an 

efficient algorithmic solution for the MSTP was Otakar 

Boruvka in 1926 [18]. However, the two most famous 

algorithms were published by Joseph B. Kruskal [19] and 

Robert C. Prim [20], who referenced Boruvka. The following 

focuses on Kruskal’s algorithm, proposing an idea how to use 

it in order to find the topology with the highest probability.  

Boruvka’s, Prim’s and Kruskal’s algorithm belong to the 

group of greedy algorithms. Greedy means that subsequently 

choosing a local optimum also leads to a global optimum [21]. 

In the case of the MSTP, the global optimum is a subset of 

edges connecting all nodes, whereby the sum of the edge 

weights is minimal. This condition can be satisfied by sorting 

all edges by their weights and selecting incrementally the 

smallest remaining edge until all nodes are connected. This is 

the basic approach of Kruskal’s algorithm. In addition, 

Kruskal adds a new edge only if it does not create cycles in 

the graph. Accordingly, the complexity of the algorithm is 

determined by the sorting function and the cycle detection 

algorithm. An efficient way to implement cycle detection for 

Kruskal’s algorithm is the union-find data structure [22], with 

which the complexity of Kruskal’s algorithm is O(m log(n)) 

with m denoting the number of edges and n being the number 

of nodes [21]. In our case the edge weights are the connection 

probabilities. The global optimum therefore does not equate to 

the minimum sum but to the maximum product of the edge 

weights which in turn is equivalent to the maximum topology 

probability. The following is a suggestion how a slight 

modification of Kruskal’s algorithm might be used instead of 

backtracking. 

1) Create a trivial graph consisting only of nodes 

representing the network components Si and no edges. 

2) Sort all possible connections by their probabilities in 

descending order. 

3) As long as not all network components have been 

connected, repeat the following steps: 

a) Take the connection (Si, Ijk) with the highest 

probability and delete it from the list. 

b) Discard the connection if 

 it creates a cycle or 

 Si has already been connected or 

 Ijk has already been connected 

Otherwise, add the connection to the graph. 

IX. EXCLUDING UPLINK INTERFACES 

Until now we have connected network devices Sc with the 

interfaces Ipj of potential parent devices Sp. This has been done 

silently implying that the uplink interface of Sc is known. 

Searching for the interface containing the address of the 

network root (e.g. the central router) has worked well in 

practice to identify the uplink port of a device. However, Yuri 

Breitbart et al. propose in [6] that two interfaces Iij and Ikl are 

directly connected if the union of their address sets contains 

all addresses occurring in the entire network and if the 

intersection of Iij and Ikl is empty. But the address tables of the 

interfaces must be complete to make this approach work. In 

[6] they design a solution based on forcing the AFTs to 

update. Furthermore, they collect data from the AFTs over a 

long time period. In [8] they propose an algorithmic solution 

for topology inference with incomplete AFTs, stating it as a 

NP-hard problem. But they do not use any probabilistic 

methods. Instead of calculating overlap degrees based on the 

relationship between parent and child devices, the following 

could be done: Let Iij and Ikl be two interfaces of interest, and 

let Q denote the set of addresses occurring in the entire 

network, which equates to the union of all interfaces on all 

devices. Then, in reference to (4) we can calculate the overlap 

degree of Iij ∪ Ikl and Q with (12). 

  (12) 

Equally—for the intersection of Iij and Ikl —we can calculate 

the non-overlap degree for the interfaces Iij and Ikl with (13). 

  (13) 

Combining these two overlap degrees leads to (14). 

  (14) 

The overlap degree Ocomb now builds the new basis for the 

construction of connection probabilities. Finally these 

probabilities again can be used to search for the most probable 
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topology in the same way described in the previous sections. 

This means that only the address sets used for the calculation 

of overlap degrees are changed and the basic approach is not 

affected. The difference is that it is no longer necessary to 

distinguish uplink interfaces from downlink interfaces. 

X. LIMITATIONS AND FUTURE WORK 

This paper does not introduce a complete topology 

discovery mechanism for multi-subnet networks. It only 

considers topologies of a single subnet in a switched domain. 

Future work may therefore include the question how this 

algorithm can be extended to multi-subnets. 

Even though the author drafted the use of Kruskal’s 

algorithm, the purpose of this paper does not include 

providing the most efficient search algorithm. For this reason, 

future work should also include the implementation of a more 

efficient search algorithm whereby Kruskal’s algorithm might 

be an obvious solution as explained in section VIII. 

As outlined in section IX the calculation of connection 

probabilities should also be improved so that uplink interfaces 

do not need to be excluded. Furthermore, future work should 

contain testing the algorithm on larger networks. 

XI. CONCLUSION 

In contrast to end-to-end measurements and protocol-based 

solutions the use of AFT information can provide algorithmic 

solutions that are independent from the technologies that 

networks are based on. The incompleteness of AFTs is a key 

problem of this approach. This paper introduces a probabilistic 

algorithm considering incomplete information as a natural part 

of the problem. Instead of solving the problem exactly we 

content ourselves with probabilistic results. 

The algorithm works with heterogeneous networks, it is 

technology-independent, it produces low error rates and it can 

be implemented efficiently. The main purpose of this paper is 

to solve the problem of incomplete AFTs by the calculation of 

overlap degrees. The author has shown that this approach can 

be used to implement a reliable and efficient algorithm for the 

discovery of heterogeneous network topologies. Therefore, 

this paper provides a small but meaningful piece in the field of 

topology discovery. 
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