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Abstract — Various implementations of wireless sensor networks 

(i.e. personal area-, wireless body area- networks) are prone to 

node and network failures by such characteristics as limited node 

energy resources and hardware damage incurred from their 

surrounding environment (i.e. flooding, forest fires, a patient 

falling). This may jeopardize their reliability to act as early 

warning systems, monitoring systems for patients and athletes, 

and industrial and environmental observation networks. 

Following the current trend and widespread use of hand held, 

mobile communication devices, we outline an application 

architecture designed to detect and predict faulty nodes in 

wireless sensor networks. Furthermore, we implement our design 

as a proof of concept prototype for Android-based smartphones, 

which may be extended to develop other applications used for 

monitoring networked wireless personal area and body sensors 

used in other capacities. We have conducted several preliminary 

experiments to demonstrate the use of our design, which is 

capable of monitoring networks of wireless sensor devices and 

predicting node faults based on several localized metrics. As 

attributes of such networks may change over time, any models 

generated when the application is initialized must be updated 

periodically such that the applied machine learning algorithm 

maintains high levels of both accuracy and precision. The 

application is designed to discover node faults and, once 

identified, alert the user so that appropriate action may be taken. 
 
Keywords–wireless sensor networks, data mining and machine 
learning, smartphone; 
 
 
 

I. INTRODUCTION  
 

Our desire to gather and disseminate information, regardless 

of location, has motivated researchers and engineers to develop 

novel hardware technologies which allow communication over 

vast distance, from any location through satellite links and 

terrestrial, high throughput networks. These new, super powerful, 

handheld smart devices have evolved to the point where those 

available today exceed the computational power found in the 

average desktop computer. With such power at our fingertips, 

computer scientists and engineers are able to create software 
applications with high complexity that are capable of almost 

anything imaginable from video conferencing and remote area 

observation and monitoring to voice recognition and artificial 

intelligence. Persistent research into new possible frameworks 

and architectures for these applications continues to generate 

novel concepts and systems. 
 

Scientific research as to how various species learn and 
gain knowledge has resulted in learning profiles derived from 
these studies. Researchers have studied these volumes of 
information in great depth to increase understanding and 
attempt to extract the underlying ideologies and algorithms 
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involved. It is these resulting methods which are then 
integrated into machine learning applications and software 
solutions. When data mining and machine learning (DMML) 
is applied in areas involving recognition, enhancement, 
diagnosis, planning, robot control, prediction, and the like, the 
algorithms involved contribute to the overall, “artificial 
intelligence (AI)” of the system. 
 

Recent advancements in low cost, micro processing and 
sensing technologies have generated enormous interest and 
allowed the widespread use of networks of computational 
sensor units capable of wireless communication using various 
protocols over great distances. Following the explosive trend 
of wireless sensor network (WSN) applications and 
implementations, many developers look to increase the 
reliability and quality of service (QoS) required by these 
systems using a variety of techniques and novel ideas. In [1] a 
general architecture for a WSN is outlined, which may 
describe a small network with few nodes and a single sink 
such as in personal area networks (PAN) [2, 3, 4] and wireless 
body area networks (WBAN) [5, 6, 7, 8] or may have 
numerous nodes arranged in hundreds of clusters used to 
monitor large areas [9, 10]. 
 

WSNs play a critical role in monitoring hazardous 
environments where it is unsafe to have humans permanently 
stationed nearby. Researchers and scientists traversing rough, 
dangerous terrain in order to gain access to a WSNs location 
and gather and evaluate data from and about the network, need 
not be excessively encumbered with heavy gear and supplies. 
Our objective is to create a smartphone based utility which is 
capable of mining network metrics and issuing alerts about 
actual and trends toward faults. This would ensure maximum 
mobility, by minimizing encumbrance associated with 
necessary equipment, without having to compromise the 
performance or accuracy of the WSN analysis. 
 

Using our application architecture we developed and 

implemented a proof of concept prototype, sensor management 

and regression tool (SMART), for node fault detection and 

prediction in an environmental WSN. Individual wireless sensor 

nodes are used to measure specific characteristics of an object or 

environment. These measurements are gathered and stored on the 
smartphone from each node in the network in real time after 

successfully creating a TCP connection with a WSN base station. 

As data is retrieved and stored, the system applies DMML 

algorithms to extract important attributes and correlations from 

the data. These are then used to build learning models for each 

sensor and each node. The models are then used for node 

classification and the prediction of values for each sensor. 

SMART then looks for faulty classified nodes  and large 
deviations between predicted and actual values. If the later 

value is greater than the specified percentage threshold and all 

other values lie within the threshold, we mark the outlier 
sensor metric as faulty. The application then issues an alert to 

the user, including the node identifier for those which are 

classified as faulty and when specific sensors breach the 
percentage threshold. 
 

Our initial experiments were utilized to determine which 
numeric prediction algorithm was best suited for our 
application as there are several constraints associated with 
mobile platforms including the relation between time, energy, 
and complexity. In other words, the greater the complexity, 
the more time and energy is required to complete the task. 
Therefore, the primary focus of our early experimentation was 
to determine which algorithm gave us the best balance while 
maintaining highly accurate results. Further experimentation is 
planned, to test for possible unknown limitations of our 
architecture. 
 

This paper looks first at some related work in Section II, 
followed by a description of the prototype design in Section 
III and experiment in IV. In Section V we describe our 
observations and data, followed by conclusions in Section VI 
and our plans for future work in VII. 
 

II. RELATED WORK  
 

Since the wide spread implementation and use of WSNs, 

researchers continue to develop new methods to refine the 
capabilities of these networks. There have been numerous 

projects which attempt to reduce and detect network faults and 

hardware malfunction and degradation, insuring that these 
networks continue to operate optimally. WSN faults may occur 

for several reasons such as energy depletion, component fragility, 
broken links, partitioning, and more. Recently several projects 

have been conducted which are primarily focused on detecting 
WSN faults, using a variety of novel methods, some of which 

gave us inspiration to create our application. 
 

In [11] the authors describe an algorithm which is capable 
of detecting node faults in WSNs. The approach, named 
FIND, ranks each node based on the sensed readings and their 
physical distances after each locally detected event. Distances 
are defined and measured according to the signal attenuation, 
as distance has a direct effect on this parameter, assuming that 
sensor readings somewhat reflect the corresponding distance. 
A node is labeled as faulty when there is a significant 
mismatch between the signal and data rankings. The proposed 
theoretical model shows that the average distance ranking is a 
provable indicator of possible data faults. 
 

M. Lee et al. [12] developed a fault model capable of 
identifying and detecting node faults, under the assumption 
that each node has a similar transmission range and equivalent 
hardware functionality. The algorithm is based on 
comparisons between neighboring nodes and broadcast 
decisions made by individual nodes. Time redundancy is also 
considered in order to tolerate any transient faults found both 
in sensing and communication. To minimize any delays 
resulting from the time redundancy, a sliding window is 
employed which stores the previous results. 
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Other researchers focus on the development of novel methods 
and concepts, often revealing new application areas in the field of 
DMML. One such project [13] exploits DMML algorithms to 
determine WSN reliability and faulty hardware in the network. 
They present a novel approach which applies Logistic Regression 
[14] to determine the reliability of a WSN. Placing emphasis on 
the concept of reliability and its importance for WSNs, their 
method is applied to classify individual nodes as faulty or not 

faulty, more specifically, they consider reliability based on a 
specific type of network lifetime. 
 

Another novel application described in [15], implemented 
the k-NN algorithm to estimate non-linear relationships 
between multipath signal parameters and a mobile terminal 
position. To validate their solution, simulations were 
conducted using a realistic multipath scattering environment. 
These systems have several areas where they no longer 
function optimally, such as time synchronization problems and 
non-line of sight and multipath errors [16, 17]. 
 

Producers of mobile products in recent years have begun to 
integrate MIMO communication technologies into their 
products [18]. This particular application exploits the 
characteristics associated with MIMO such that it may, using 
a single base station, determine the geographical location of a 
mobile target. Applying advanced array signal processing [19, 
20], they estimate the angle of arrival, angle of departure, and 
delay of arrival of MIMO signals. To train the classifier, they 
collected measurements at various locations, each location an 
instance having n measurement attributes. A mapping model 
was then generated from this data applying weighted k-NN 
and Euclidean distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Application architecture showing connected WSN components and 
generalized internal working of Android SMART software. 
 

Each of these projects incorporate specialized algorithms to 
detect and find attributes and correlations associated with 
WSNs which may have a detrimental impact on network 
functionality and reliability. After observing the various 
techniques these projects utilize to achieve their objective, we 
integrate similar concepts into our application design. While 
extensive research into fault detection in WSNs has been 
conducted, each project requires a laptop or desktop computer. 
Our design is such that we may conduct the analysis onboard a 

smartphone which gives us the capability to find network 
faults locally, requiring no internet connection, and increasing 
mobility by eliminating the need carry cumbersome 
computational equipment to remote WSN locations. 

III. PROTOTYPE DESIGN  
 

Our application architecture, shown in Figure 1, 
implements four main functions; data acquisition, data 
consumption, model generation, and real time classification 
and prediction. In data acquisition, WSN nodes monitor 
objects or a physical environment. The object or environment 
to be monitored may include living or mechanical entities, 
indoor/ outdoor systems or environments, or combinations of 
each. WSN nodes read and transmit various metrics from their 
sensed surroundings to a base station that forwards the data to 
another system. Data consumption uses the interface to 
process this raw data into usable engineering units and then 
stores it locally. A monitoring application identifies interesting 
conditions and events, alerting the user if necessary. In model 
generation, SMART uses DMML algorithms which mine and 
analyze the stored metrics and generate prediction models for 
forecasting node health. Each sensed attribute, in each 
incoming instance, uses its prediction model to conduct real 
time numeric prediction. For the data consumption, model 
generation, and real time classification and prediction, the 
smartphone is running our custom built application. 
 

SMART reads, stores, and mines WSN sensor node metrics 

from each node in the network. It then uses saved data to build 

prediction models for each sensor using methods from the Weka 

API [23]. After the initial models have been generated, it uses 

them to predict and identify probable weaknesses and node 

failures in the network. The concept is such that in a WSN, prior 

to the occurrence of failures, warnings can be generated and 

proper action taken such as hardware replacement or re-routing of 

network data. We use a short term window to observe the spatial 

aspect of the WSN for rapid prediction and location of faulty 

network nodes and to ensure that these models and metric 

thresholds are updated periodically such that the predictive 

advantages of the application are preserved. A long term, history 

based window is employed for the temporal analysis of the WSN, 

which enables the confirmation of node faults found in the short 

window and also analysis of trends in the network nodes over 

time. Our design is flexible such that both PANs and WBANs, 

used in areas such as healthcare and patient monitoring and sport 

activities, and WSNs, used for environmental monitoring, may be 

analyzed locally in real time for reliability and failures. 

 
Our application is designed for the Android platform as this 

operating system allows developers greater freedom to access 
specific components and simplifies access and integration with 
other required functionality from various Java libraries. Our 
WSN consists of Crossbow sensor components as this system 
was readily available for implementation. Sensor motes are 
programmed in the nesC language for the TinyOS runtime 
environment designed specifically for low frequency computer 
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components. To test our proof of concept, we conducted some 
preliminary experiments using a variety of DMML numeric 
prediction algorithms to find the one best suited for our 
particular WSN scenario. 
 

IV. EXPERIMENTAL DESIGN 
 

To demonstrate the use of SMART for a WSN monitoring 
the environment, we developed an Android [24] application 
and custom firmware for the WSN motes. With our firmware  
installed, the WSN nodes report specific sensed metrics of 
their immediate environment to the base station. The 
transmitted attributes include light, temperature, acceleration 
in a 2D plane, and voltage of the power supply. These are then 
packaged in AM message format and transmitted to the base 
station. The base station receives and buffers these packets for 
access by SMART. Our experimental WSN utilized a small 
network of motes to provide us with proof of concept, but 
many environmental applications consist of numerous nodes. 
The scalability of the application is limited only by the 
computational ability of the smart device used for the DMML 
operations. We also write the incoming WSN data to files 
rather than storing everything in the RAM memory to reserve 
it for the DMML segment of the program. 
 

a. Materials 
 
WSN Hardware: 
 
 Crossbow MICAz MPR2400CA motes [25, 26] equipped 

with a 2.4 GHz, IEEE 802.15.4 compliant ZigBee 
transceiver, and 4Kbytes of RAM  

 
 Crossbow MTS310 [27] sensor boards equipped with light, 

temperature, 2D accelerometer, 2D magnetic flux sensor, 
microphone and sounder  

 
 Crossbow MIB600CA [28] with Ethernet (10/100 Base-T) 

serial connectivity to bridge the “wired” and “wireless” 
segments of the network  

 
 Netgear Wi-Fi 802.11 b/g [29] access point  
 
SMART Interface Hardware: 
 

 LG Optimus 2X (P990) [30] equipped with a 1GHz, dual 
core Tegra processor, Wi-Fi 802.11 b/g/n network card, 
512MB RAM, 40GB storage, running Android 2.3.4.  

 
b. Preparation  

 
To prepare each component for use in the experiment, we 

describe several mandatory requirements: 
 
With respect to the smartphone: 
 
 Needs to be running the Android operating system version 

2.3.4 or later  
 
 Needs to have its wireless capability enabled prior to running 

the application  
 
 Needs to be successfully connected to the access point of the 

WSN base station it will monitor  

 
 Needs to have the option ‘install third party applications’ 

enabled in the phones settings  
 
 Needs to have ample storage (>5Gb in our case) for the .apk 

and data files of the application which is dependent on the 
number of nodes in the network  

 
With respect to the WSN: 
 
 Nodes used for sensing need to have the appropriate 

firmware installed  
  Nodes must have batteries installed with adequate power  
 The base station mote must have the appropriate firmware 

installed  
 
 The base station needs to be connected to the MIB600 

Ethernet gateway  
 
 The gateway needs to be connected via Ethernet to a router 

or access point  
 

c. System Logic  
 

The logic flow of our application is shown in Figure 2, 
where the smartphone first creates a TCP connection and 
requests permission to access the WSN base station. Once 
access is granted, it begins to intercept the raw message 
packets from the network every second. Each time a new 
message is received SMART removes the message wrapper 
and parses the raw contents. It then converts the raw data into 
useful engineering units for each individual sensor using 
specific formulas for each attribute. After conversion, each 
metric is saved as an attribute in each instance for each node 
in the network. Each node has its own short term file which 
consists of instance readings every second for one hour, a total 
of 3600 instances. Every minute, the average value for the 
previous 60 readings is stored in a long term file which 
consists of each averaged instance for an entire 24 hour period 
or 1440 instances. We use the long window to incorporate 
daily sensor trends into our analysis, for example the light and 
temperature sensors will fluctuate with the time of day as the 
Sun’s movement will have an impact on the reading. 
 

Each time a new instance is added to a nodes’ short and 
long files, we include a timestamp so that we may examine 
correlations between the time of day and particular sensor 
values. At the end of each node’s short time period, we use 
these 3600 readings to generate new prediction models for 
each sensor measured in the analysis. Updating these models 
every hour allows us to incorporate any spatial changes to 
sensor readings, increasing the accuracy of our application. 
 

If we want to discern between sensor changes occurring, 
for example, at sunset from those that occur in a forest fire, we 
must observe and extract network trends over a longer period 
of time. The purpose of observing the long time period is such 
that we may incorporate periodic sensor trends which would 
not be identified in the short window. We generate the long 
window values by taking the averages for each sensor using 
the values sensed from the previous minute (60 readings). 
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Again each node has an associated long window file, which 
encompasses the past 24 hour period. At the end of each 
period, models are generated or rebuilt for each sensor, which 
are then used for long window numeric prediction and reflect 
the long term trends for each sensed attribute of each node in 
the network. 
 

After the initial short window models have been generated 
once the first hour of data has been gathered, incoming 
instances are fed through these models and for each sensed 
attribute a predicted value is calculated which we utilize to 
determine faults in the WSN. Performance and reliability 
analysis of DMML algorithms is always dependent on the type 
of data analyzed and enforces the need for testing in order to 
determine the best choice for a particular application. For our 
initial experiments, we tested a variety of DMML algorithms 
including Linear Regression [31], Decision Stump [32], 
Decision Table [33], k-nearest neighbor (IBk, k-NN) [34], and 
M5P [35]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Activity diagram showing the SMART application logic. 

 
Once the predicted values have been generated, they are 

compared to the actual values to determine the difference 
percentage. This measurement is then compared to the 
percentage of variance thresholds we allow for each particular 
sensor, for example, the threshold of variance for the 
temperature sensor is 5%. If, in this particular case, the 

difference between the predicted and actual value is greater 
than 5% and all the other sensed attribute values in this 
instance are within their specified threshold boundaries, we 
feed the instance through the long window models if they 
exist. Percentages associated with the threshold boundaries, 
depend on the WSN implementation (i.e. environment, 
observed object). If no models have been generated for the 
long term window, then the sensor is marked immediately as 
faulty and an alert is triggered. If there are long term models, 
the instance is fed through the models to observe if the 
difference still exists. If this anomaly still exists, an alert is 
generated and the user notified. The alert generated displays to 
the user the mote number and the predicted faulty sensor. 
 

At the end of every hour, the short term models are updated 
and the previous instance and model files are overwritten. 
Similarly at the end of every long cycle the models are 
updated and files overwritten. These temporal parameters for 
both short and long term files have been set such that the file 
size limitations of the Android platform are not exceeded. We 
also use these windows to assist in the identification of short 
and 
long term trends in the network, as the use of only one of these 
windows would reduce the accuracy of the application. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CPU time requirements for both model generation and single 
instance numeric prediction using the generated models, for each tested 
algorithm. 

 
V. OBSERVATIONS AND DATA  

 
In this section we outline our observations when conducting 

preliminary experiments with our proof of concept 
application. Our first tests were conducted to determine which 
prediction algorithm was able to generate sensor models and 
predict attribute values in the shortest time period. The results, 
shown in Figure 3, reveal that Decision Stump had a 
negligible difference to generate the initial models from the 
training data and the shortest interval needed to conduct real 
time prediction. These times would be directly affected by the 
number of instances in the training data, and would also vary 
according to the smartphones’ capabilities (i.e. CPU, RAM).  

WSN message packets are received from the motes in 
succession. Each node’s information is displayed on the 
smartphone and each instance stored in a separate file for each 
node. Functionality from the Weka libraries properly 
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generates prediction models for each attribute. When a short 
term cycle of data has been analyzed and modeled, real time 
readings received from the nodes are fed directly through the 
appropriate model for classification. If the variance threshold 
is exceeded for any attribute’s predicted value when fed 
through its associated short and long term model, an alarm is 
generated to notify the user of possible node failure.  

Further tests were conducted so that we may observe the 

absolute error distribution, shown in Figure 4, for each 

algorithm. This graph shows that the distribution for Decision 
Stump had the lowest absolute error above 30%, and had 

many predicted values within 10% of the actual value. 

Considering that, for smartphone implementations, we need an 
algorithm which maintains a low error rate and energy 

consumption, while having a quick analysis time, Decision 
Stump demonstrated the best overall performance. This is 

clearly shown in Table 1, where we observe the energy 

consumption associated with each instance. We approximate 
the total energy consumption per instance based on the 

percentages found in the smartphone settings which show 

battery consumption for display and CPU usage in percent and 
time used, combined with Wi-Fi’s use of 330mAh reported by 

the Android API and a transfer rate of approximately 1Mbps, 
knowing each message size is 224 bits. As these were 

preliminary tests with our application, having this additional  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Absolute error distribution for each tested numeric prediction 
algorithm. 

 

knowledge allows us to update our design for future testing 
and increased accuracy. Again, these results show Decision 
Stump to be the best performing algorithm. 

 
  Approximate  

 Instance Energy Total Error 
 Prediction Consumption Rate 
 Time in per Instance in Percentage 
 Seconds Joules  
     

IBk 2.45 0.03988008  5.98338 
M5P 0.6 0.00976356  7.278393 

DecisionStump 0.5 0.00813852  3.43144 
DecisionTable 0.6667 0.0108558  6.533934 

LinearRegression 0.5667 0.00923076  5.481302 
 

Table 1: Experimental results for prediction time, approximate energy 
consumption, and error percentages for each algorithm with the overall 
best performance in bold. 

 
VI. CONCLUSIONS 

 
Breakthroughs in mobile hardware architecture are 

constantly marketed which allow greater local computation 
in a lightweight, hand held package. As a result, developers 
are creating applications which have highly complex 
architectures and capabilities and push the thresholds of 
current DMML research and technology. We described a 
variety of DMML applications which greatly improve both 
accuracy and functionality of systems in many scenarios 
using a variety of complex formulas and innovative 
statistical techniques.  

As wireless and sensor technologies are following a 
similar trend, engineers and researchers continually develop 
new technologies and application areas for WSNs in 
everything from individualized athlete and patient 
monitoring to hazardous environment observation. Sensor 
node anomaly and failure detection is extremely important 
to WSNs where reliability and QoS assurance is critical.  

Our proof of concept application is designed to operate on 
small, portable smart devices, detect node faults in a WSN, 
and alert the user as to any anomalous predictions. Early 
experimental results have demonstrated the ability of the 
application to pinpoint node hardware faults in a WSN. 
Further experiments and refinement of the software are 
planned such that we may increase the accuracy, while 
reducing the time and energy needed for analysis. 
 

VII. FUTURE WORK 
 

To further test our prototype design we are currently 
developing prototype systems for two other WSN application 
scenarios. As the reliability of metrics gathered by PANs used 
in the medical industry for patient observation and long term 
monitoring is extremely critical, we apply SMART to our 
prototype design which is capable of analyzing sensed patient 
attributes in real time.  

Secondly, we are prototyping and testing an application 
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which will predict broken communication and control the flow 
of data between an ocean-based platform and a land-based 
component using various sensor components. Maintaining 
high levels of both reliability and QoS for wireless 
communication between components in the OCTT [36] 
architecture is critical to individuals testing prototype turbines 
for the purposes of harvesting renewable energy from oceanic 
currents. 
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