
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

69

Abstract. For the last two decades, software architecture

has been adopted as one of the main viable solutions to

address the ever-increasing demands in the design and

development of software systems. Nevertheless, the rapidly

growing utilization of communication networks and

interconnections among software systems have introduced

some critical challenges, which need to be handled in order

to fully unleash the potential of these systems. In this

respect, Ultra-Large-Scale (ULS) systems, generally

considered as a system of systems, have gained considerable

attention, since their scale is incomparable to the traditional

systems. The scale of ULS systems makes drastic changes in

various aspects of system development. As a result, it

requires that we broaden our understanding of software

architectures and the ways we structure them. In this

paper, we investigate the lack of an architectural maturity

model framework for ULS system interoperability, and

propose an architectural maturity model framework to

improve ULS system interoperability.

Keywords: ULS Systems, Maturity Model, Interoperability,

Software Architecture

1. Introduction
Software engineering faces many challenges at the present

time. Nevertheless, fundamental disparities between the current

understanding of software and software development at the

scale of Ultra-Large-Scale (ULS) [29] software-intensive

systems remains one important challenge, which introduces

critical constraints for effective achievement of the software

engineering goals in a technical and economical manner. This

is due to the fact that proper development of ULS systems has

substantial impact on software engineering activities.

As systems grow larger and more complex to become ULS

systems, new requirements for software architectures emerge.

The software architecture of a program or computing system is

the structure(s) of the system, which comprise software

elements, the externally visible properties of those elements,

and the relationships among them [2]. Based on this definition,

it is inferred that software architecture characterizes the

structure of a system. In general, architecture is the

fundamental organization of a system embodied in its

components, their relationships to each other, and to the

environment, and the principles guiding its design and

evolution [17].

According to the ISO 15704 standard [16], an architecture

represents a description of the basic arrangement and

connectivity of parts of a system (either a physical or a

conceptual object or entity), which is expected to create a

comprehensive overview of the entire system when put together

[8]. It should be noted that handling this large amount of

information is quite challenging and needs a well-developed

framework. The problem is even intensified in the case of ULS

systems, due to their scale. So far, various Information Systems

Architecture (ISA) frameworks have appeared in literature:

Zachman framework [30,34], FEAF [9], TEAF [10], ToGAF

[24], E2AF[28], and C4ISR [5,6] to name a few. Nevertheless,

these frameworks fail to provide all the required support for

ULS systems. Consequently, the inability of current ISA

frameworks to meet these requirements necessitates a

breakthrough research in the development of a ULS

architectural framework [29].

In this paper, we present an architectural maturity model

framework in ULS systems interoperability based on complex

system theory. The proposed framework is assumed to be

capable of addressing the requirements of such systems.

The rest of the paper is organized as follows. In Section 2,

we present the required background and the problem definition.

We introduce the ULS interoperability model based on

complex system theory in Section 3. The ULS maturity models

are discussed in Section 4. Finally, Section 5 summarizes the

contributions and sets the direction for the future work.

2. Background
It has been observed that current approaches fail to fully

define, develop, deploy, operate, acquire, and evolve ULS

systems, as described in SEI report [29]. ULS systems are

considered as cities or socio-technical ecosystems, while our

Towards a Software Architecture Maturity Model for Improving Ultra-Large-Scale

Systems Interoperability

S. Shervin Ostadzadeh, Fereidoon Shams
*
Computer Eng. Dept., Science and Research Branch, Computer Eng. Dept., Shahid Beheshti University

 Islamic Azad University, Tehran, Iran Tehran, Iran

Email: ostadzadeh@srbiau.ac.ir Email: f_shams@sbu.ac.ir

mailto:f_shams@sbu.ac.ir

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

70

current knowledge and practices are geared toward creating

individual buildings or species. This inconsistency points out

the research direction that is crucial for reaching a proper

solution to develop ULS systems. The challenges that have to

be addressed when developing a ULS system span three

different areas: 1) Design and Evolution, 2) Orchestration and

Control, and 3) Monitoring and Assessment [29].

2.1. Research context
The research work presented here addresses the design area

related to “design and evolution”. Fundamental to the design

and evolution of a ULS system will be explicit attention to

design across logical, spatial, physical, organizational, social,

cognitive, economic, and other aspects of the system. Attention

to design is also needed across various levels of abstraction

involving hardware and software as well as procurers,

acquirers, producers, integrators, trainers, and users. A key area

of research in design is thus the need for design of all levels of

a ULS system.

2.2. Why interoperability?
Broadly speaking, interoperability refers to coexistence,

autonomy, and federated environment, whereas integration

conventionally refers to the concept of coordination, coherence,

and uniformization [8]. ULS systems go far beyond the size of

current systems and system of systems by every measure,

including, the number of the lines of code; the number of

people using the system for different purposes; amount of data

stored, accessed, manipulated, and refined; the number of

connections and interdependencies among software

components; and the number of hardware elements [29]. These

are instances of ‘Loosely coupled’ systems. This means that the

components in such systems can interact and are connected by

a communication network; they can exchange services while

continuing locally their own logic of operation. “Tightly-

Coupled” indicates that the components are interdependent and

cannot be separated. This is the case of a fully integrated

system. Thus, two integrated systems are inevitably

interoperable, however, two interoperable systems are not

necessarily integrated.

2.3. Related work
Since the beginning of the last decade, the research work on

architecture development is based on the improvements in

enterprise interoperability frameworks. Generally, the main

purpose of such frameworks is to provide an organizing

mechanism so that concepts, problems, and knowledge on

enterprise interoperability can be represented in a more

structured way [8].

The LISI (Levels of Information Systems Interoperability)

approach [6], developed by C4ISR Architecture Working

Group (AWG) in 1997, is a framework to provide the US

Department of Defense (DoD) with a maturity model and a

process for determining joint interoperability needs, assessing

the ability of the information systems to meet these needs, and

selecting pragmatic solutions in addition to a transition path for

achieving higher states of capability and interoperability.

The IDEAS interoperability framework [15] reflects the

view that interoperability is achieved on multiple levels. These

levels include inter-enterprise coordination, business process

integration, semantic application integration, syntactical

application integration, and physical integration.

The ATHENA Interoperability Framework (AIF) [1] is

structured into three levels. The conceptual level is used for the

identification of research requirements and the integration of

research results. The applicative level is used for knowledge

transfer regarding the application of integration technologies.

The technical level is used for technology testing based on

profiles and the integration of prototypes.

The E-health interoperability framework [22], which is

developed by NEHTA (National E-Health Transition

Authority) initiatives in Australia, brings together

organizational, information, and technical aspects related to the

delivery of interoperability across health organizations.

The European Interoperability Framework (EIF) [12,13]

aims at supporting the European Union’s strategy of providing

user-centered eGovernment services. This is achieved by

defining services as overarching set of policies, standards, and

guidelines, which describe the way in which organizations have

agreed, or should agree, to do business with each other.

In United Kingdom, the eGovernment Unit7 (eGU), has

based its technical guidance on the eGovernment

Interoperability Framework (e-GIF) [11]. e-GIF mandates sets

of specifications and policies for any cross-agency

collaboration as well as for e-government service delivery.

The NATO C3 Interoperability Environment (NIE) [20]

encompasses the standards, products, and agreements adopted

by the Alliance to ensure C3 interoperability. It serves as the

basis for the development and the evolution of C3 Systems.

Layers of Coalition Interoperability (LCI) [31] is a

framework for possible measures of merit to deal with the

various layers of semantic interoperability in coalition

operations.

System of Systems Interoperability (SOSI) [19] introduces

three types of interoperability: 1) programmatic:

interoperability between different program offices, 2)

constructive: interoperability between the organizations that are

responsible for the construction (and maintenance) of a system,

and 3) operational: interoperability between the systems.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

71

2.4. Research context
The scale of complexity and uncertainty in the design of

ULS systems is so immense that resists the treatments offered

by traditional interoperability methods. According to SEI report

[29], ULS system complexity is a new perspective:

“architecture is not purely a technical plan for producing a

single system or closely related family of systems, but a

structuring of the design spaces that a complex design process

at an industrial scale will explore over time”. Breaking up an

architecture into design spaces and striving for a set of coherent

and effective design rules would seem to imply a significant

degree of control of the overall design and production process.

Nevertheless, the design spaces, design rules, and organizations

will be continually adjusting and adapting to both internal and

external forces, which makes it difficult to handle them all.

The criticality of the research is justified by the fact that

handling the large volume of information available in ULS

systems is only feasible by utilizing a well-developed

interoperability framework. A newly proposed framework is

expected to broaden a traditional interoperability framework to

include people and organizations; social, cognitive, and

economic considerations; and design structures such as design

rules and government policies.

This research work centers around the development of an

architectural framework to improve the interoperability of ULS

systems. We pose the question that given the issues with the

design of all levels of ULS architectures, how can one organize

and classify the types of information that must be created and

used in order to improve the ULS interoperability?

3. Complex system theory
A complex system is a system composed of interconnected

parts that, as a whole, exhibit one or more properties (behavior

among the possible properties) not obvious from the properties

of the individual parts [18]. The complexity of a system may be

of one of the two forms: disorganized complexity and

organized complexity [33].

The scale of ULS systems reveals some characteristics that

are not seemingly visible in traditional systems [14,29]: (1)

decentralization; (2) inherently conflicting, unknowable, and

diverse requirements; (3) continuous evolution and

deployment; (4) heterogeneous, inconsistent, and changing

elements; (5) erosion of the people/system boundary; (6)

normal failures; (7) new paradigms for acquisition and policy.

These characteristics undermine current, widely used,

information systems framework and establish the basis for the

technical challenges associated with ULS systems.

Table 1. Complex systems and ULS systems similarities

ULS systems are examples of disorganized complexity

because disorganized complexity is a matter of a very large

number of parts. Table 1 lists the similarities between the

features of complex systems and their corresponding parts in

ULS systems.

3.1. ULS interoperability model
As introduced in Section II.C, the SOSI [19] can be

considered as a significant initiative for ULS systems

interoperability. However, as mentioned in SEI report [29],

people will not just be users of a ULS system, rather, they will

be part of its overall behavior. In addition, the boundary

between the system and user/developer roles will blur. Just as

people who maintain and modify a city, may also reside in the

city, in a ULS system, a person may act in the role of a

traditional user, or in a supporting role as a maintainer of the

system health, or as a change agent adding and repairing the

functions of the system.

Assuming that people are part of a ULS system signifies that

a new perspective has to be taken into account: culture. Figure

1 depicts an extension to the SOSI model in order to achieve

ULS system socio-technical characteristics. The four layers of

ULS interoperability model corresponds to the four layers of

complex system theory model. In complex system theory, we

can divide a system into four layers: 1) vital, 2) psyche, 3)

social, and 4) cultural [32].

Complex Systems ULS Systems

Difficult to determine boundaries

May be open Low
May have a memory

Dynamic network of multiplicity

May produce emergent phenomena
Relationships are non-linear

Relationships contain feedback loops

Erosion of the people/system boundary
Erosion of the people/system boundary

Continuous evolution and deployment
Decentralization

Inherently conflicting, unknowable, and

diverse req.
Heterogeneous, inconsistent, and

changing elements
Continuous evolution and deployment

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

72

Figure 1. Alignment between ULS interoperability model and

complex system theory [27]

Figure 2. ULS interoperability framework (Blank cells are not

supposed to be modeled.)

3.2. ULS interoperability framework
Zachman Framework (ZF) [34], originally proposed by John

Zachman, is often referenced as a standard approach for

expressing the basic elements of information system

architecture, and is widely accepted as the main framework in

ISA. Although some of today’s successful ISA frameworks

(including ZF) are used for enterprise systems architecture, the

problem discussed in the previous section is inherently broader

and deeper than current capabilities of ISA frameworks

[3,4,7,21,23,25,26]. Figure 2 depicts our initiative proposed

framework to improve interoperability based on complex

system theory. In this work, we apply ZF as an initial start and

try to enrich it by ULS Interoperability model to support the

special characteristics of ULS interoperability. The proposed

framework should be a spectrum of technologies and methods

with software engineering, economics, human factors, cognitive

psychology, sociology, systems engineering, and business

policy.

4. Interoperability maturity model
Following the discussion in Section 3 and based on a

systemic view of ULS interoperability framework, we identify

five maturity levels of interoperability, as listed in Table 2. The

transition from one level to a higher one entails the removal of

interoperability barriers and the satisfaction of interoperability

requirements. It is important to note that a lower

interoperability maturity does not systematically mean a

malfunction of the system. The maturity is only evaluated from

the interoperability point of view and is not applicable for other

purposes.

4.1. Level 0 (Isolated)
The initial maturity level of interoperability is characterized

by isolated systems. In such systems, resources are not intended

to be shared with others. System modeling and description are

incomplete or even nonexistent. Generally, no interoperation is

possible or desired. Communication remains mainly as manual

exchange of information. Systems run standalone and they are

not prepared for interoperability.

4.2. Level 1 (Operated)
At this maturity level, systems may fully integrate (note that

this is in contrast to interoperate). All interactions happen in the

operational layer, however interoperability remains very

limited. Basic IT devices are connectable and electronic data

exchange becomes feasible. Systems are generally defined and

modeled separately.

Table 2. ULS interoperability maturity model

Level Name Description

0

1

2

3

4

Isolated

Operated

Constructed

Programmed

Allied

 No Interoperability. Systems work without any interaction.

 Common operational layer. Systems share common data (M0).

 Common constructive layer. Systems share common model (M1).

 Common programmatic layer. Systems share common meta-model

(M2).

 Common cultural layer. Systems share common meta-meta model

(M3).

4.3. Level 2 (Constructed)
This level of maturity requires common models that enable a

system to create and to make changes in its data so that to

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

73

adhere to common formats. In addition, relevant standards are

used as much as possible. Models remain platform-dependent.

Nevertheless, models are used not only for modeling at design

time, but also for execution at run time.

4.4. Level 3 (Programmed)
At this maturity level, systems are well organized to handle

interoperability challenges. Interoperability capability is

extended to heterogeneous systems, often in a networked

domain. Although systems remain heterogeneous, meta-

modeling is performed and mapping is generalized using meta-

models. Systems are capable of interoperating with multiple

heterogeneous partners.

4.5. Level 4 (Allied)
This level corresponds to the highest maturity level of

interoperability. Systems are able to dynamically adjust

themselves and modifications are carried out on the fly. Shared

domain ontologies/strategies are generally existent. At this

level, systems are able to interoperate with multi-lingual and

multi-cultural heterogeneous partners. Additionally, all

information becomes a subject of meta-meta model and can be

adapted at runtime.

5. Conclusion
Achieving ULS interoperability involves changes to the way

we define life, including acquisition practices and guidance,

technologies, engineering and management practices,

operational doctrines for both the usage and those who support

the systems. Realizing this vision requires that we begin to

define approaches and models in more concrete terms.

In this paper, an architectural maturity model based on

complex system theory is proposed to improve ULS system

interoperability. This allows software architects to model

various aspects of ULS systems interoperability. The

proposed model presents a classification schema for

descriptive representation of a ULS system. The goal is

that the framework be used to complement a full-structural

schema within the ULS interoperability maturity model. In

particular, this approach will enable architects to :

 classify the ULS maturity model

interoperability;

 represent and analyze ULS levels of

interoperability;
 work with others toward a complete and

consistent set of interoperability models

As the future work, one is expected to propose an

appropriate methodology to help increasing architectural

maturity level in ULS systems.

References
[1] ATHENA, Advanced Technologies for Interoperability of

Heterogeneous Enterprise Networks and their

Applications, FP6-2002-IST1, Integrated Project, 2003.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in

Practice, 2nd Edition, SEI Series in Software Architecture,

Addison-Wesley Professional, 2004.

[3] S. Blanchette, P. Clements, M. Gagliardi, J. Klein, U.S.

Army Workshop on Exploring Enterprise, System of

Systems, System, and Software Architectures (CMU/SEI-

2008-TR-023), Software Engineering Institute (SEI),

Carnegie Mellon University (CMU), Pittsburgh, PA, USA,

2009.

[4] P. Boxer, S. Garcia, “Enterprise Architecture for Complex

System-of-Systems Contexts”, 3rd Annual IEEE

International Systems Conference, Vancouver, Canada,

2009.

[5] C4ISR Architecture Working Group (AWG), C4ISR

Architecture Framework, Version 2.0, USA Department of

Defense (DoD), 1997.

[6] C4ISR Architecture Working Group (AWG), Levels of

Information Systems Interoperability (LISI), USA

Department of Defense (DoD), 1998.

[7] P. Clements, “Exploring Enterprise, System of Systems,

and System and Software Architectures”, SEI Webinar,

Carnegie Mellon University (CMU), Pittsburgh, PA, USA,

2009.

[8] D. Chen et al., “Architectures for enterprise integration and

interoperability: Past, present and future”, Comput Industry

(Ind), 2008. doi:10.1016/j.compind.2007.12.016.

[9] Chief Information Officers (CIO) Council, Federal

Enterprise Architecture Framework, Version 1.1, USA,

1999.

[10] Department of the Treasury, Treasury Enterprise

Architecture Framework, Version 1, USA, 2000.

[11] eGU, eGovernment Unit, eGovernment Interoperability

Framework (eGIF), version 6.1, UK, 2005.

[12] EIF, European Interoperability Framework, Brussels, 2004.

[13] EIF, European Interoperability Framework for PAN-

European eGovernment Services, IDA Working

Document, Version 4.2, 2004.

[14] G. Goth, “Ultra-Large System: Redefining Software

Engineering”, IEEE Software Journal, Vol. 25, Issue 3, pp.

91-94, 2008.

[15] IDEAS, Interoperability Development for Enterprise

Application and Software Roadmaps, Annex 1—DoW,

2002.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.13 e-ISSN: 2251-7545

74

[16] ISO, Industrial Automation Systems—Requirements for

Enterprise-reference Architectures and Methodologies,

ISO 15704, 2000.

[17] IEEE Standards board, Recommended Practice for

Architectural Description of Software-Intensive Systems,

IEEE-Std-1471-2000, 2000.

[18] C. Joslyn, L. Rocha, “Towards semiotic agent-based

models of socio-technical organizations”, Proceeding of

AI, Simulation and Planning in High Autonomy Systems

(AIS 2000) Conference, Tucson, Arizona, USA, pp. 70-79,

2000.

[19] E. Morris et al., System of Systems Interoperability,

Technical Report, Carnegie Mellon University (CMU),

Pittsburgh, PA, USA, 2004.

[20] NC3A. NATO C3 Technical Architecture Reference

Model for Interoperability, NATO Consultation,

Command, and Control Agency, 2003.

[21] NECSI, Characteristics of Systems of Systems, NECSI:

Complex Physical, Biological and Social Systems Project,

2004.

[22] NEHTA, Towards an Interoperability Framework, Version

1.8, 2005.

[23] Office of the Deputy Under Secretary of Defense for

Acquisition and Technology, Systems and Software

Engineering: Systems Engineering Guide for Systems of

Systems, Version 1.0, Washington, DC:

ODUSD(A&T)SSE, USA, 2008.

[24] Open Group, The Open Group Architecture Framework

(TOGAF), Version 9.0., USA, 2009.

[25] S. S. Ostadzadeh, F. Shams, S. A. Ostadzadeh, “A Method

for Consistent Modeling of Zachman Framework.

Advances and Innovations in Systems, Computing

Sciences and Software Engineering”, Springer, pp. 375-

380, 2007. doi=10.1007/978-1-4020-6264-3_65

[26] S. S. Ostadzadeh, F. Shams, S. A. Ostadzadeh, “An MDA-

Based Generic Framework to Address Various Aspects of

Enterprise Architecture. Advances in Computer and

Information Sciences and Engineering”, Springer, pp. 455-

460, 2008. doi:10.1007/978-1-4020-8741-7_81

[27] S. S. Ostadzadeh, B. Rezaei Rad, F. Shams, “An

Interoperability Architectural Model based On Complex

System Theory for the Ultra-Large-Scale Systems”,

Proceedings of Software Engineering and Application

(SEA’ 2011), International Association of Science and

Technology for Development (IASTED), 2011.

[28] J. Schekkerman, Extended Enterprise Architecture

Framework Essentials Guide, Version 1.5, Institute For

Enterprise Architecture Developments (IFEAD), 2006.

[29] Software Engineering Institute (SEI), Ultra-Large-Scale

Systems: Software Challenge of the Future, Technical

Report, Carnegie Mellon University (CMU), Pittsburgh,

PA, USA, 2006.

[30] John F. Sowa, John A. Zachman, “Extending and

Formalizing the Framework for Information Systems

Architecture”, IBM Systems Journal, Vol. 31, No. 3, pp.

590-616, 1992.

[31] A. Tolk, “Beyond Technical Interoperability: Introducing a

Reference Model for Measures of Merit for Coalition

Interoperability”, Proceedings of 8
th

 ICCRTS, Washington

,USA, 2003.

[32] S. Vakili, Complex Systems Theory, Shourafarin

Publication, 2010.

[33] W. Weaver, “Science and Complexity”, American

Scientist 36: 536, 1948. (Retrieved on 2007–11–21.)

[34] John A. Zachman, “A Framework for Information Systems

Architecture”, IBM Systems Journal, Vol. 26, No. 3, pp.

276-292, 1987. (Reprinted in 1999: Vol. 38, No. 2-3,

1999.)

* Corresponding Author:

S. Shervin Ostadzadeh,

Faculty of Electrical and Computer Engineering,

Science and Research Branch, Islamic Azad University,

Tehran, Iran,

Email: ostadzadeh@srbiau.ac.ir Tel:+98-21-44869655

mailto:ostadzadeh@srbiau.ac.ir
tel:+98-21-

