
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

131

Code Change Approach for Maintenance using XP Practices

Jitender Choudhari

School of Computer Science & IT

Devi Ahilya University

Indore (M.P.), India

jeet_159@yahoo.co.in

Dr. Ugrasen Suman

School of Computer Science & IT

Devi Ahilya University

Indore (M.P.), India

ugrasen123@yahoo.com

Abstract- Software is developed with prior requirements and it

is maintained continuously with rapid progresses in domain,

technology, economy and other fields. The core activity of

maintenance is code change, which changes the code to remove

a bug or add new functionality. Maintenance projects contain

an unstructured code due to patched and repatched software

while addressing successive customer issues. Change in

unstructured code without proper test coverage is a risky job.

Software maintenance process slowdowns due to lack of proper

test suite. Software maintenance process can also be affected

due to staff turnover, low team morale, poor visibility,

complexity of maintenance projects and lack of communication

techniques among stakeholders. On the other hand, Extreme

Programming (XP) practices such as Test Driven Development

(TDD), refactoring, pair programming and collective

ownership can overcome some of the challenges of

maintenance up to some extent for non-XP projects. In this

paper, an integrated code change approach is proposed for

software maintenance using XP practices such as TDD,

refactoring and pair programming. The proposed approach

uses RC story, production code and test code of existing system

during code change. The proposed approach is validated by

applying it on several academic projects of software

maintenance. It is observed that the proposed approach

provides higher quality code in terms of the structure,

correctness, robustness and maintainability hence improving

software design. The XP practices based approach enhances

both learning and productivity of the work by improving

courage, team morale and confidence to support higher

motivation in code change. In order to improve proposed

approach, this experiment can be replicated in future to collect

more data and to validate the observations.

Keywords-Software maintenance; extreme programming;

code change approach

I. INTRODUCTION

Software maintenance is the process of modifying a
software product after delivery to correct faults or to
implement new functional requirements. Software
maintenance helps to improve performance, reliability, and
adaptability for change request in the product in a modified
environment. It is categorized as adaptive, corrective,
preventive and perfective maintenance [1, 2]. The
maintenance of legacy code is a tedious, expensive, and error
prone task due to absence of test coverage, incomplete or
out-of-date documentation and unavailability of original

developer. It is hard to predict the impact of changes in
legacy code due to its complex structure [3, 4]. Thus, change
in the code without sufficient test coverage can result in
system instability and bugs.

Extreme Programming (XP) is a software development
methodology, which intends to improve software quality and
responsiveness to changing customer requirements. XP is
one of the important implementation of agile philosophy. It
is a light-weight methodology for teams of approximately 10
people developing software in the face of vague or rapidly
changing requirements [5]. XP is build upon various existing
and common sense practices and principles, but applies these
to extreme levels. For example, code review, testing,
designing, and refactoring are preformed continuously, rather
than at dedicated phases of the software process only.

Extreme programming practices are commonly used
during software development with maintenance as its regular
phase. But during maintenance of non-XP projects, XP
practices can be applied by practitioners will require a
dedicated process model for legacy system maintenance. The
iterative maintenance life cycle using extreme programming
is a process model for software maintenance that help to
resolve the problems such as, unstructured code, team
morale, poor visibility of the project, lack of communication
techniques and lack of proper test in maintenance process
[6]. It uses RC story as a requirement artifact, which can be
written by the end users of software for maintenance [7]. RC
stories provide end user collaboration and simplify
requirement engineering process of software maintenance.
The frequent tribulations such as, poor visibility of the
project, lack of communication in maintenance process can
be resolved by RC story format. The estimation of RC story
of iteration is performed using SMEEM [8, 9]. However, it is
still unidentified as to how much XP practices affect the
structural quality parameter of code and interest toward
maintenance activity during change implementation phase.

In order to investigate the effects of XP practices such as,
TDD, refactoring and pair programming in change
implementation for maintenance, a code change approach is
proposed that perform investigation of differences between
code change using XP practices and traditional approaches.
To validate proposed approach, experiments were carried
out, where the maintenance practitioners are asked to
perform changes to an existing code by using proposed code
change approach as well as traditional approach. The results

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

132

of experiments of both approaches are compared on the basis
of time duration and source code quality parameter. This
approach will be helpful in incorporating changes in legacy
code of different type of maintenance activities.

The rest of the paper is organized as follows; Section II
discusses related work on XP practices used in software
maintenance. The illustration of proposed approach of code
change is provided in Section III. Section IV covers case
study for validation of proposed technique. The results are
discussed in Section V. Finally, the concluding remark and
future work will be presented in Section VI.

II. RELATED WORK

There are several advantages of XP practices during
software maintenance [4, 6, 12, 17]. XP makes extensive use
of unit test [5, 10]. Automated unit test provides several
advantages in maintenance process such as, instant feedback
when working on a legacy code, confidence and courage to
make error prone modifications, improve more code
readability, and reduces duration of impact analysis before
any modifications [11, 12, 13, 14, 15]. It is prerequisite that
planned change for doing any refactoring be supported with
test cases. It supports addition of new features and fixing
bugs in a safe manner. During maintenance, profitably test
cases are written, run, and passed for source codes. Test-
driven maintenance will increase confidence in the code,
reduces the risk of failure, speeds up development, and
produces more robust code [16]. It is similar to the bottom-
up program comprehension approach [17, 18]. However,
adding test cases during maintenance of a complex legacy
code is difficult as it slows down maintenance process. Unit
tests themselves requires maintenance, i.e., extensive unit
tests have to be also changed when production code is
changed. Before introducing new code in existing legacy
code, automated test suite should be written in initial
iteration [14]. Writing unit tests for an entire large legacy
system at once is time consuming and practically infeasible.
To solve this problem, some prioritization criteria can be
helpful such as, divide and conquer on the basis of function
size, modification frequency and bug fixing frequency.

Refactoring is the process of altering existing software
with series of particular transformations that improve the
code without changing its behavior [19]. Refactoring
removes unnecessary complexity thereby making change in
code easier, faster and improves the structure of the code and
hence, readability. In XP, all the tests have to be executed
after refactoring [6, 20]. Refactoring can be used in top-
down and bottom-up program comprehension [18].
Refactoring can be applied either by analyzing code for
refactoring using bug density analyzed using bug tracking
system or on encountering bad smells in the code [12].
Refactoring supports courage needed to make changes in
legacy code and simplify designs [21]. The tests have to be at
place for refactoring to be safe, due to this reason tests
should be introduced to the code prior to refactoring [18, 5,
15, 22]. Writing unit tests and refactoring in small steps
devise code testable [22, 23, 24]. Reverse and forward

refactoring activity deals with two usually opposed program
properties efficiency and understanding can be useful for
maintenance [25]. With tests, changes can be performed in a
better way.

Change operation of legacy code in maintenance projects
is often mind-numbing. With pair programming, it might be
more enjoyable, explore more alternatives, and work better
on complex problems. Using this practice, knowledge is
spread among the maintenance team using frequent partners’
switching. Pairs provide better result on solving complex
problems [26, 27]. They come up with better solutions that
are easier to maintain later stages as decision are made by the
pair. Coding standard is more strictly adhered with improved
structure of code and code quality with 15% less defects [26,
27]. It is observed that 15% more time is consumed in pair
programming but XP proponents claim that the time loss is
regained because of the improved code quality.

Each of these practices i.e. TDD, refactoring and pair
programming have their own advantages and limitation in
the respective applications and areas. But there does not exist
any standard approach that could integrate all three practices,
i.e., TDD, refactoring and pair programming; and perform
together for better results. In this paper, an integrated
approach is proposed covering all three practices. Main
phases of code change approach are requirement artifact
extraction, check artifact availability, artifact extraction, test
case creation or modification, create or modify production
code, run test case and apply continuous integration. This
approach changes legacy code in an iterative manner. The
proposed approach is discussed in Section III with its phases.
In this way, the proposed approach super shades the benefits
of existing practices and provides a standard approach for
code change to the maintenance projects.

III. CODE CHANGE APPROACH

The existing process models of software maintenance
uses traditional approaches to change code according to the
new requirement or to remove bugs. In this paper, a code
change approach is proposed based on XP practices. The
concept of proposed approach is shown in Fig. 1. The main
aspects of this approach are artifact extraction from
repository apply TDD, refactoring and pair programming for
bug removal and new feature development.

It uses Request for Change (RC) stories, source code and
test cases of existing software as input and performs all the
phases in the proposed technique. The main phases of this
approach are requirement artifact extraction, check artifact
availability, artifact extraction, test case creation or
modification, create or modify production code, run test case
and apply continuous integration. These phases are
performed in an orderly fashion to produce a better structural
code with complete test coverage. The individual phases are
illustrated in subsequent paragraphs.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

133

A. Requiremnt Artifact Extraction

In this phase a RC story from RC story data base is
extracted. The RC story database is maintained by the
Project Manager.

B. Check Artifact Availability

In this phase, checking the availability of artifacts is
performed to find whether production code and test cases for
a particular RC story are available. There might be the
following three results of matching process; both test case
and production code are not available, test case is not
available and production code is available; and test case and
production code both are available. The signature matching
process can be used to check availability of test case and
source code.

C. Artifact Extraction

After checking availability this phase, relevant test cases
and production code are extracted from repository. Test case
and production code repository is maintained with the help
of existing system. For example, RC1, a requirement change
story, which is fulfilled by two production code classes and
respective test cases will be extracted from the repository.
The repository contains test cases and production code of
existing system and it is maintained during each and every
change.

D. Test Case Creation or Modification

If test case and production code both are not available for
a particular RC story then test case ca be written according to
the requested features. If test case is not available and
production code is available for a particular RC story then
program comprehension can be applied to write test cases
according to the structure of production code. If test case
and production code both are available for a particular RC
story then test case can be modified according to the
requirement change. In initial iteration, emphasise should be
given on writing test cases to obtain more and more coverage
for legacy code, thereafter bug fixing and other maintenance
activity are performed. Pair programming practice can be
used here for test case creation.

E. Create or Modify Production Code

If test case is ready then pair programming can be
applied to create or modify production code to pass tests.
Here, refactoring process will be applied in small steps to
incorporate new requirement change. Test case, which is
already implemented, plays a vital role and provides
confidence in this process of refactoring. For example, if r1,
r2, r3…rn, are different steps in refactoring and v1, v2, v3…vn
are different versions of code then vs is the version of code,
which is the most suitable for change; where 1<=s<=n.
Performing refactoring in this phase also improves
comprehensibility and maintainability of the code for future
maintenance.

Figure 1. Code Change Approach Using XP Practices

F. Run Test Case

Test cases are executed to ensure that they are passing
with modified or new production code. If test fails then
production code can be modified and re-run the tests. If test
case passes then the same approach can be used for other RC
story of maintenance project. Thereafter, production code
and test case are stored in the repository for future reference.

End User

RC Story

Database

Test Case and
Code

Repository

Requirement
Artifact Extraction

Create/Modify the
Production Code

Run Test Case

Apply Continuous

Integration Test

Modify Existing

Test Case

Check Test

Case and

Code
Availability

Write New Test

Case

RC story

No

Yes

New Test Case

Modified Test Case

Production Code

Pass

Fail

Test Results

Artifact Extraction

Existing System

Searching

Retrieval

Updated System

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

134

Finally, integration is performed at the end of the day to
integration with the existing code.

G. Apply Continious Integration Test

Here, continuous integration testing is applied to ensure
that a change in the code for a RC story will not introduce
new faults. Using this step in code change approach, we
determine whether a code change in one part of the software
affects other parts of the software. During this phase, we re-
run previously run tests and check whether behavior of the
program has change or not.

On successful execution of the phases of proposed code
change approach, the quality of production code will
improved with sufficient test coverage. The maintainability
of the product in this way can be much better as compared to
the product developed by existing approach. The approach
can be more effective if required test cases and production
codes are readily available in the repository. During pair
programming; if one of the member of pair already involved
in the existing system development; then it will ease the
program comprehension and improve productivity. However,
the approach is validated with all its phases with the help of
case study, which is illustrated in the subsequent section.

IV. CASE STUDY

The case study for maintenance projects for this
experiment involves three applications for the validation of
proposed approach. Initially three applications were
originally developed by three project groups of an Institute
without using XP practices. All the three applications are
currently in use in an academic environment. The overview
of these projects is described in successive paragraphs with
required maintenance task in the form of RC story and
particularized description is presented in Table I.

TABLE I. PROJECT DESCRIPTION

Sr.

No

Project

Name

Project

Category

Technology Modules

A Exam

Control- room
Management

Desktop

Application

Java Examination

Superintendent

B Student

Feedback
System

LAN based

Application

J2EE Student,

College Management,
Administrator

C Library

Circulation

System

LAN based

Application

Perl Student,

Liberian,

Administrator

Project-A: Exam Control- room Management, ECM is a

desktop application used to provide examination control

room facility to the superintendent of an examination center.

The superintendent can perform control room activity

through application such as preparing requisition of material

for exam, checking student detail of eligibility for exam, to

prepare duty chart and seating plan, to prepare dispatch

formats according to the university standards. The following

RC stories are requested for maintenance.

RC story 1: Superintendent can maintain answer book

record.
RC story 2: View the previous exam record in the specific
format.

Project-B: Student Feedback System, SFS is a LAN

based student feedback system for an Institute. Students can

register and submit feedback of teacher through web

application running on LAN. After successful submission of

feedback, college management can view the feedback in

different format and can generate reports for different

purpose. The following RC stories are requested for

maintenance.

RC story 1: Student can submit feedback on the basis of

subject code.

RC story 2: College management can view and print

department wise feedback reports.

Project-C: Library Circulation System, LBS is developed

in Perl and MySQL. Students use their respective login to

maintain profile, view issued book detail, apply reserve for

book. Librarian uses their login to issue book, book return,

view student and book detail, generate various reports etc.

The following RC stories are requested for maintenance.

RC story 1: Calculation of fine under different heads.

RC story 2: Start SMS alerts.

The end users of applications require some correction

and need to include new features such that information is
available in more efficient and convenient manner. The
requirement change is written by end user in the form of RC
story. In this case study, two RC stories are considered from
each project. The maintenance work of above projects were
assigned to the three new project groups, each project group
have three postgraduate student members. In each project
group, two students form one pair and the rest one is required
to work individually. Pair and individual both solve same RC
stories and work under the same conditions. Pair members
of a group apply XP based approach for code change
whereas individual member apply existing approach for code
change. Implementation of RC stories is performed in
incremental order. Students have some experience of
languages in which their respective application was
developed. They have never performed XP practices before,
nor do they have experience of maintenance projects. For
observation code, snap-shots and voice-recording are
considered. The data pertaining to the observations on these
projects are discussed in Section V.

V. EVALUATION OF SOFTWARE QUALITY

PARAMETERS

All three groups of maintenance projects were completed
their tasks. Maintainers were interviewed and the workings
of systems under maintenance were checked. During
interview of maintainers, they were interviewed with defined
questions on the basis of certain parameters such as courage

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

135

and confidence, understanding of system, interest in
maintenance activity etc. After completion of the tasks, the
code, snapshot and voice recording were observed and
checked on some parameters for each group such as, time
taken in completing each RC story etc. It is shown in Table
II, which is pictorially represented in Fig. 2. The structure of
the code, number of lines of code written for a RC story by
programmers, number of defects in the code, number of
necessary and unnecessary change made in classes during
change propagation are also observed. Results of experiment
indicate that proposed approach produced better quality
codes in terms of extendibility, understandability,
comprehensibility etc. as compare to the existing approach,
as shown in Table III and Fig. 3.

TABLE II. COMPARISON OF TIME (HOURS) CONSUMED IN BOTH APPROACHES

S.

No.

Maintenance

Task

Existing code

change

approach

(in hours)

Proposed code

change approach

using XP

(in hours)

A B C A B C

1. RC story 1 13 8 9 10 7 7

2. RC story 2 10 6 8 6 4 5

Figure 2. Comparison of time (hours) consumed in both approaches.

TABLE III. COMPARISON OF QUALITY PARAMETERS IN BOTH APPROACHES

S.

No.

Name of Parameter

Existing code

change approach

(in %)

Proposed code

change approach

using XP

(in %)

A B C A B C

1. Extendibility 30 60 50 70 75 70

2. Understandability 55 55 60 80 80 68

3. Reusability 45 50 60 90 85 88

4. Efficiency of code 70 75 70 80 80 80

5. Integrate-ability 75 70 80 75 80 80

6. Maintainability 60 70 70 65 85 90

7. Comprehensibility 60 60 65 80 80 75

8. Testability 40 60 80 80 60 90

9. Reliability 70 60 70 75 90 80

10. Robustness 60 70 70 70 85 80

Figure 3. Comparison of quality parameters in both approaches.

VI. DISCUSSION

Some of the interesting facts have been observed
regarding proposed approach in the view of maintenance
practitioners and enhance product features. XP based
approach enhances learning and speeds up the work by
improving courage, team morale and confidence to support
higher motivation in code change. It improves interest in
maintenance activity through sharing of ideas using pair
programming. Pair proposes better alternative solutions and
understanding towards code change as compared to
individuals. In proposed approach, comprehension activity
requires less time as compared to existing approach. Using
proposed approach, maintenance practitioners gain better
understanding of overall system, which is shown in Table II.
It is observed the RC stories 2 in all projects were
implemented in less time duration. As the project progresses,
the pairs use their experiences for better solution and
understanding. Code change approach using XP practices
provides higher quality code in terms of the structure,
correctness, robustness and maintainability of code; hence,
improving software design. Change propagation task is
performed more correctly in proposed approach. The
proposed approach generates code and test classes that can
be reused by multiple applications as they are having well
structured and generalized for common applications. The
code and test classes generated by the proposed approach are
self-documented.

VII. CONCLUSIONS AND FUTURE SCOPE

The maintenance of legacy code is a tedious, expensive,
and error prone task due to absence of test coverage,
incomplete or out of date documentation and unavailability
of original developer. To study the affect of XP practices on
structural quality parameter of code and interest towards

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.21 e-ISSN: 2251-7545

136

maintenance activity during change implementation phase,
here, a code change approach of maintenance using XP
practices is proposed. To validate investigation results, with
case studies experiment were performed, where the
maintenance practitioners were asked to make changes to an
existing code by using both, proposed and traditional code
change approach. We have compared the results of
experiments on the basis of some code structural quality
parameters. After experiment, it is observed that code change
approach using XP practices provides higher quality code in
terms of the structure, correctness, robustness and
maintainability of code; hence, improving overall design of
software. XP practices based approach enhances both
learning and productivity of the work by improving courage,
team morale and confidence to support higher motivation in
code change. The observations of the proposed approach can
be more effective and experimental by applying it on large
projects with more team members. Future work will focus on
replicating this experiment in order to collect more data and
to validate our observations.

REFERENCES

[1] B. P. Lientz and B. E. Swanson, Software maintenance management,
Addison- Wesley publishing company, 1980.

[2] A. Behforooz, and F.J. Hudson, Software Engineering Fundamentals.
Oxford University Press, pp. 382–392, 1996.

[3] V. Rajlich, “Comprehension and Evolution of Legacy Software,” In
Proceedings of the 19th International Conference on Software
Engineering, Boston, USA, pp. 669-670,1997.

[4] A. van Deursen, T. Kuipers, and L. Moonen, “Legacy to the
Extreme,”. In M. Marchesi and G. Succi, editors, Proceedings of the
1st International Conference on eXtreme Programming and Flexible
Processes in Software Engineering - XP2000.

[5] K. Beck, Extreme Programming Explained – Embrace Change,
Pearson Education Low price Edition Asia, 2006.

[6] J. Choudhari and U. Suman, “Iterative Maintenance Life Cycle
Using eXtreme Programming,” Proc. International Conference on
Advances in Recent Technologies in Communication and Computing
(ARTCom-2010), IEEE Computer Society,October 15 - 16, 2010, pp.
401 – 403.

[7] J. Choudhari and U. Suman, “Designing RC Story for Software
Maintenance and Evolution,” Journal of Software (JSW), Academy
Publisher, vol. 7, no. 5, May 2012, pp. 1103-1108.

[8] J. Choudhari and U. Suman, “Story Points Based Effort Estimation
Model for Software Maintenance,” Proc. 2nd International
Conference on Computer, Communication, Control and Information
Technology (C3IT- 2012), ScienceDirect by ELSEVIER, February 25
- 26, 2012, pp.761-765.

[9] J. Choudhari and U. Suman, “Phase wise Effort Estimation for
Software Maintenance: An Extended SMEEM Model,” Proc. CUBE

International IT Conference & Exhibition, ACM Digital Library,
September 3 - 5, 2012, pp.397-402.

[10] K. Beck, “Embracing Change With Extreme Programming,” IEEE
Computer, Vol. 32 Issue 10, Oct. 1999, pp. 70-77.

[11] P. Schuh, “Recovery, Redemption, and Extreme Programming,”
IEEE Software, Volume: 18 Issue: 6, Nov/Dec 2001, pp. 34-41.

[12] C. Poole, and J.W. Huisman, “Using Extreme Programming in a
Maintenance Environment,” IEEE Software, Vol. 18 Issue 6,
Nov/Dec 2001, pp. 42-50.

[13] G. Wright, “eXtreme Programming In A Hostile Environment,” Proc.
Third International Conference on Extreme Programming and
Flexible Processes in Software Engineering - XP2002, pp. 48-51.

[14] E.C. Eckman III, “XP Transition Roadmap,” Proc. Third International
Conference on Extreme Programming and Flexible Processes in
Software Engineering - XP2002, pp. 219-222.

[15] A. Jalis, “Probe Tests: A Strategy for Growing Automated Tests
around Legacy Code,” In D.Wells and L.A.Williams (Eds.): Extreme
Programming and Agile Methods - XP/Agile Universe 2002, pp.122-
130.

[16] Elliotte Rusty Harold. “Testing legacy code.” available at
http://www.ibm.com/developerworks/java/library/j-
legacytest/index.html.

[17] A. van Deursen, “ Program Comprehension Risks and Opportunities
in Extreme Programming,” Proc. 8th Working Conference on Reverse
Engineering, (WCRE'2001), IEEE Computer Society, pp. 176-185.

[18] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok,
“Refactoring Test Code,” Proc. 2nd International Conference on
Extreme Programming and Flexible Processes in Software
Engineering (XP2001), M. Marchesi and G. Succi (Eds.), 2001.

[19] M. Fowler, “Refactoring: Doing Design After the Program Runs,”
Distributed Computing, Sept. 1998, pp. 55-56.

[20] M. Feathers, “Working Effectively With Legacy Code” available at
http://www.objectmentor.com/resources/articles
/WorkingEffectivelyWithLegacyCode.pdf.

[21] L.Tokuda, and D. Batory, “Evolving Object-Oriented Designs with
Refactorings,” Proc. 14th International Conference on Automated
Software Engineering, IEEE, pp. 174-181.

[22] S. Freeman and P. Simmons, “Retrofitting Unit Tests”, Proc. Third
International Conference on Extreme Programming and Flexible
Processes in Software Engineering - XP2002, pp. 11-15.

[23] F. Ricca, M. Di Penta, M. Torchiano, “Guidelines on the use of Fit
tables in Software Maintenance Tasks: Lessons Learned from 8
Experiments”.

[24] T. Bhat and N. Nagappan, “Evaluating the Efficacy of Test-Driven
Development: Industrial Case Studies”.

[25] G. Villavicencio, “Software Maintenance Supported by Refactoring”.

[26] A. Cockburn, and L. Williams, “The Costs and Benefits of Pair
Programming,” In M. Marchesi and G. Succi, editors, Proc. 1st
International Conference on eXtreme Programming and Flexible
Processes in Software Engineering - XP2000, 2000.

[27] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the Case for Pair Programming,” IEEE Software, vol.
17, issue: 4, Jul/Aug 2000, pp.19-25.

http://www.ibm.com/developerworks/java/library/j-legacytest/index.html
http://www.ibm.com/developerworks/java/library/j-legacytest/index.html

