
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

156

A framework for reuse of multi-view UML artifacts

Hamza Onoruoiza Salami*, Moataz Ahmed

Information and Computer Science Department,

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

e-mail: {hosalami, moataz}@kfupm.edu.sa

Abstract— Software is typically modeled from different

viewpoints such as structural view, behavioral view and

functional view. Few existing works can be considered as

applying multi-view retrieval approaches. A number of

important issues regarding mapping of entities during multi-

view retrieval of UML models is identified in this study. In

response, we describe a framework for reusing UML artifacts,

and discuss how our retrieval approach tackles the identified

issues.

Keywords- UML, software reuse, software retrieval, multi-

view, genetic algorithm

I. INTRODUCTION

Software reuse refers to the development of software
using previously developed software, rather than from
scratch [1]. There are several benefits of software reuse such
as accelerated development, reduced overall cost, reduced
risk and effective use of specialists [2]. However, the
drawbacks of software reuse include increased maintenance
cost, lack of tool support, effort to find and adapt reusable
components, effort to create and maintain components, and
not-invented-here syndrome [2, 3].

Software reuse is not restricted to source code reuse.
Other artifacts like domain models, requirement
specifications, design, documentation and test data can be
reused as well [4]. The benefits of reuse can be maximized if
early-stage artifacts are reused, because it leads to reuse of
later-stage artifacts derived from the early-stage artifacts [5].

There are four phases of software reuse; representation,
retrieval, adaptation and incorporation [6]. At the
representation stage, a model of the new software component
(query) is presented. During retrieval, a software component
which is similar to the query, and whose adaptation cost is
minimal is selected from the components library or
repository. The retrieved component is modified to obtain a
new component during adaptation. Finally, the new
component is incorporated or integrated into the repository.
Unified Modeling Language (UML) is a general-purpose
modeling language maintained by the Object Management
Group (OMG), a consortium of companies. It provides
diagrams for visualizing, specifying constructing and
documenting the artifacts of a software-intensive system [7].
UML is widely used during initial stages of software

development such as requirements engineering, architectural
and detailed design.

Significant amount of research has been carried out
regarding reuse of early-stage artifacts represented using
UML. Early-stage artifacts are usually modeled and analyzed
from different perspectives such as structural and behavioral
views. Yet, a review of current literature suggests that little
research effort has been put in the development of techniques
for reusing software artifacts described from multiple
viewpoints. Thus in this research, we describe a framework
for reusing artifacts described from structural, behavioral and
functional perspectives. Requirement specifications for new
software are compared with requirement specifications of
existing software systems contained in a repository. The
corresponding artifacts (for example design, code and
documentation) for the software system with the most
similar requirements are returned for reuse, because it is
expected that systems with similar requirements should have
many other artifacts in common.

We identify a number of issues that are not considered in
the few existing multi-view UML artifact reuse approaches,
and explain how our proposed reuse framework tackles these
issues. The rest of the paper is organized as follows: Section
II describes related work. In Section III, we describe a
framework for reusing UML artifacts. Section IV discusses
important issues to be considered during multi-view
retrieval. Our approach for retrieving multi-view UML
artifacts is the subject of Section V. Finally, we conclude the
paper and describe future work in Section VI.

II. RELATED WORK

The UML taxonomy of diagrams partitions the various
diagrams into two categories: structure diagrams and
behavior diagrams [8]. Structure diagrams such as class,
component, object, composite structure, deployment,
package and profile diagrams document the static structure
of system objects. On the other hand, behavior diagrams like
activity, use case, state machine, sequence, communication,
interaction overview and timing diagrams show the dynamic
behavior of system objects. In this section, we discuss
existing research on UML artifact reuse. Table I summarizes
the different existing works. We consider an existing reuse
work as multi-view, if it matches artifacts that have at least
one structure diagram and one behavior diagram. Otherwise,
the work is considered as utilizing a single-view approach.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

157

In [9] authors utilized the WordNet lexicon and Case
Based Reasoning (CBR) for retrieving UML models.
Because the authors represented cases as class diagrams,
their work involved retrieval of UML class diagrams. Robles
et al. [10] have used domain and application ontologies for
class diagram retrieval. Domain ontologies are used to
measure the semantic similarity between classifier names,
while application ontologies are needed to measure the
semantic similarity between class diagram classifiers and
relationship types.

In [11] a set of similarity metrics was used to measure
class diagram similarity based on the semantic relatedness of
class names, class attributes and class methods. Authors in
[12] computed the structural similarity of class diagrams
using an inexact graph matching technique. The similarity
score of class diagrams was calculated from their adjacency
matrix representation using a lookup table containing
difference values for the different types of class diagram
relationships.

The similarity between two sets of sequence diagrams are
computed using two nested levels of genetic algorithm (GA)
in [13]. At the upper level, sequence diagrams in one model
are mapped to the sequence diagrams in the other model. At
the lower level the similarity between two sequence
diagrams is measured by mapping classes in both diagrams,
and considering the number of matching and differing
method calls. A CASE tool was developed in [14] to
automatically retrieve sequence diagrams from a repository
using a graph matching algorithm called SUBDUE. The
authors indicated that the matching technique can also be
applied to use case diagrams and class diagrams, thus we
classify their approach as a multi-view reuse approach.

Kotb [15] has described an approach for retrieving
similar use case descriptions using textual entailment, a
natural language processing technique. A text T entails
another text H if the meaning of T can be inferred from H.
Any repository use case whose summary of descriptions is
entailed by that of the query is retrieved and automatically
adapted for reuse. In [16] information extracted from use
case diagrams are stored in an Ontology Web Language
(OWL) base ontology. The ontology is stored in a relational
database system which is queried during reuse.

Information retrieval techniques were used for scenario
management and reuse in [17]. Use case scenarios were
represented by a set of attributes such as goals, authors,
events, actors and episodes. The similarity between two
scenarios was computed as the degree of overlap between
their attributes. Similarly, in [18] use cases were matched by
computing a similarity measure of their event flow vectors.

In [19] query and repository UML models are
transformed from their XMI representation to first order
logic specifications. The specifications are then matched,
guided by some set of rules. Their approach is deemed to be
multi-view, because it supports matching of class, sequence,
use case and communication diagrams.

In the RedSeeDS project [20], repository software
systems are considered for reuse if their requirements are
similar to those of the new system. Requirements were
represented in Requirements Specification Language (RSL)
[21] in three possible formats: scenarios written in less
formal natural language sentences; scenarios written in more
formal constrained Structured English sentences; and using
UML sequence and activity diagrams. None of the UML
structure diagrams are considered during retrieval; hence, we
do not consider their work as a multi-view reuse work.

In [22] software models are retrieved for reuse in two
steps: classification and retrieval. During classification, a
model is described from six facets which capture its
functional requirements and useful properties. Predefined
terms for each facet are arranged on a conceptual graph to
aid the retrieval process. In the retrieval stage, similarity
between query and repository models are computed using
either the shortest distance in the conceptual graph or the
degree of overlap of descriptor terms for both models.
Because software models containing class, object, activity,
state machine and collaboration diagrams can be retrieved
for reuse, we consider their work as utilizing a multi-view
reuse approach.

Park and Bae [23] adopt a two-stage multi-view approach
for retrieving repository artifacts. In the first stage, query and
repository class diagrams’ structures are compared using
analogy. Based on the similarity scores, a subset of
repository UML models are selected. During the second
stage, the authors compute the similarity scores of graphical
representations of sequence diagrams in the shortlisted
models.

III. PROPOSED REUSE SYSTEM

This section describes our proposed system for reusing
software modeled using UML. As shown in Fig. 1, reuse is
carried out in four steps: pre-filtering, multi-view retrieval,
adaptation, and integration.

A. Pre-filtering

 The aim of the pre-filtering stage is to minimize retrieval
time by selecting a first set of repository artifacts, which will
be assessed and ranked in the following stage. Pre-filtering is
particularly important when the repository contains many
models, because it eliminates the need to load requirement
specifications of all systems from the repository into the
primary memory of the computer during retrieval. In this
stage, metadata of the new requirement is compared with the
metadata of each software system held in the repository. In
order to ensure that this stage is computationally
inexpensive, we propose using two classes of previously
obtained metadata: computed metadata and extracted
metadata. Both types of metadata are automatically obtained
from requirement specifications when new software systems
are stored to the repository for the first time, and whenever
changes are made to repository models.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

158

Previously computed metadata refer to easily computable
size metrics such as total number of classes in a class
diagram, number of messages exchanged by objects in a
sequence diagram, number of attributes and operations of
classes, and cyclomatic complexity of state machine
diagrams. This set of metrics can be used to filter out
repository requirement specifications whose sizes differ
significantly from that of the new system.

Furthermore, the domain of the software system can be
inferred from extracted metadata such as class and package
names in the model. This provides a way of selecting only
artifacts belonging to similar domains as the new system [9].

B. Multi-view Retrieval

 In this stage, matching and similarity metrics are
employed to asses and rank the requirement specifications
shortlisted in the pre-filtering stage. Matching with GA is
explained in Section V. At the end of this stage, a ranked list
of requirement specifications is presented to the reuser.
Requirement specifications at the top of the list are most
similar to the new requirement specifications, thus reuse of
the corresponding artifacts (for example design, code and
documentation) from the repository should require the least
time and effort.

C. Adaptation

 During adaptation the reuser modifies the artifacts
corresponding to the most similar requirement specifications
to suit the needs of the new system.

D. Integration

 In this stage, all artifacts for the new system, as well as
automatically computed or extracted metadata are stored in
the repository. In order to avoid degradation of response time
and memory requirements, only new software systems that
are sufficiently different from existing software systems
should be added to the repository.

IV. IMPORTANT ISSUES FOR CONSIDERATION DURING

MULTI-VIEW RETRIEVAL

In this section, we identify three important issues that
should be taken into consideration during comparison of
multi-view requirement specifications.

A. Issue 1: Consistent Mapping of Classes in Class

Diagrams and Sequence Diagrams

We provide an illustrative example to underscore this
issue. Assume a requirement specification Q is to be
compared with two requirement specifications R1 and R2
from the repository. Q, R1 and R2 each have one class
diagram and one sequence diagram as shown in Fig. 2.
While comparing requirement specifications Q and R1, a
multi-stage retrieval technique might produce maximum
similarity value for both classes in the first stage, and
erroneously assign maximum similarity value for the

sequence diagrams in the second stage (and vice versa
depending on which set of diagrams are first matched).
Similarly, a retrieval technique which merely computes
multi-view similarity as weighted sum of single-view
similarity values would produce a wrong aggregate similarity
value. Both approaches produce inaccurate similarity scores
because of the inconsistent mapping of classes in the class
diagrams and sequence diagrams (A1:A2, B1:B2, C1:C2 and
B1:C2, C1:B2 in the class diagrams and sequence diagrams,
respectively).

In order to further appreciate why the similarity score
between Q and R1 should not be maximum, consider
requirement specifications Q and R2. From Fig. 2e, class C3
is composed of class D3. If both classes are merged into one
class, R2 will become identical with Q. From the perspective
of the reuser, merging the two classes (C3 and D3 in R2)
may require less effort than resolving the inconsistency
between Q and R1. Thus intuitively, we expect the similarity
score between Q and R2 to be higher than that between Q
and R1. We note that none of the previous multi-view reuse
works identified in Section II (that is, [14, 19, 22, 23]) have
addressed the issue of consistent mapping of classes in class
diagrams and sequence diagrams.

B. Issue 2: Consistent Mapping of Classes in Class

Diagrams and State Machine Diagrams

State machine diagrams are used to model the behavior
of system elements such as objects (that is, class instances)
[8]. They show how an object responds to events according
to its current state, and how it enters into new states [24].
Just as classes should be consistently mapped in class
diagrams and sequence diagrams, it is important to ensure
that classes are consistently mapped when comparing two
models containing class and state machine diagrams.

Only reference [22] discusses retrieval of software
artifacts containing state machine diagrams. In their work,
the authors compared diagrams of different types at a very
abstract level. For example, a taxonomy of different UML
diagrams was built for the ‘design view’ facet. Using the
taxonomy, the similarity between two models was computed
from the distance between the types of diagrams contained in
the models. The authors did not discuss the consistent
mapping of classes in class and state machine diagrams.

C. Issue 3: Efficient Mapping of Multiple Sequence

Diagrams in two Requirements

During the requirements phase of a software project, use
cases are used to specify the functionality of a system. One
or more sequence diagrams is then used to realize each use
case [4]. Thus, it is common for requirement specifications
to contain several sequence diagrams. An important issue is
how to efficiently compare the sets of sequence diagrams in
two requirement specifications. None of the existing works
on multi-view reuse has addressed this issue.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

159

TABLE I. UML ARTIFACTS SUPPORTED BY VARIOUS STUDIES

Work
(First Author & Publication

Year)

Structure Diagrams Behavior Diagrams Multi-
view Class

Diagram
Object

Diagram
Sequence
Diagram

Use Case
Diagram

Activity
Diagram

State
Machine
Diagram

Collabora
tion

Diagram

Communi
cation

Diagram

Ahmed 2006, [13]

Ali 2003, [22]
Bonilla-Morales 2012, [16]

Alspaugh 1999, [17]

Blok 1998, [18]

Gomes 2002, [9]

Khalifa 2008, [19]
Kotb 2010, [15]

Park 2010, [23]
Robinson 2004, [14]
Robles 2012, [10]

Rufai 2003 [11]

Salami 2012, [12]

Bildhauer 2009 [20]

Figure 1. Schematic diagram of proposed multi-view reuse system

2. Multi-view

 retrieval stage

Meta data

1. Pre-filtering stage

Metadata

comparison

Repository
(requirements, design, code,

metadata)

List of selected

models

Selected

requirements (XMI)

Similarity
assessment and

ranking

New requirements

(XMI)

Ranked list of

retrieved models

Requirements + design

+ code of retrieved

project(s)

3. Adaptation stage

Adaptation of

retrieved models

Requirements + design +

code of new project

4. Integration stage

Automatic Meta

data extraction

Meta data + requirements +

design + code of new

project

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

160

V. MULTI-VIEW RETRIEVAL USING GENETIC

ALGORITHM

System requirements are typically modeled from
different but related viewpoints [4]. The division into
different views is arbitrary, and often includes at least three
views namely structural view, functional view and
behavioral view [25-27]. Thus, even though the UML
taxonomy of diagrams provides only structure and behavior
diagrams, we propose a multi-view retrieval technique that
considers three system views: functional view, structural
view and behavioral view. Sequence diagrams, class
diagrams and state machine diagrams would be considered
as representative diagrams of the functional, structural and
behavioral views, respectively.

In this section, we describe our retrieval technique which
comprises entity matching and similarity scoring. Our initial
similarity scoring algorithms are still being fine-tuned, thus
we describe only the matching technique which makes use of
GA. Furthermore, we describe how our matching technique
resolves the different issues raised in Section IV.

Matching refers to mapping an entity in one model to
another entity of the same type in the other model to be
compared. Once a pair of entities has been mapped, a
similarity scoring algorithm can be used to compute their
degree of similarity. An entity could be a class, object (i.e.
instance of a class) or an entire diagram.

Our proposed approach first maps the classes in the class
diagrams of both requirement specifications. A structural
similarity measure is then computed from both diagrams.
Next, the functional and behavioral similarity scores are
computed. Functional similarity is measured by mapping
pairs of sequence diagrams in the two models. Similarity
between two mapped sequence diagrams is computed using
the previously established class mappings, and considering
the number and order of messages exchanged between
mapped objects in the two sequence diagrams.

State machine diagrams show how an object responds to
events according to its current state, and how it enters into
new states [24]. Thus, we assume that the previously
established class mappings implicitly determine the mapping
of the state machine diagrams that depict the behavior of
objects of the mapped classes. Finally, multi-view similarity
is computed as an aggregate of the three similarity values.
Thus, the proposed retrieval method is not expected to
produce maximum similarity values for requirement
specifications Q and R1 in Fig. 2.

Determining an optimal mapping for the entities in two
requirement specifications to be compared is a combinatorial
optimization problem. If the entities are arbitrarily mapped,
the best possible similarity value may not be obtained. GA
can be used to obtain an optimal (or near optimal) mapping
of entities in two requirement specifications. GA has been
used to solve combinatorial optimization problems such as
travelling salesman problem, timetabling and eight queens’
chess problem.

Figure 2. three sample requirement specifications. a) Q’s class diagram,

b) Q’s sequence diagram, c) R1’s class diagram, d) R1’s sequence diagram,

e) R2’s class diagram, f) R2’s sequence diagram

Let Q and R be two requirement specifications. Q has cQ
classes in its class diagram and sQ sequence diagrams.
Similarly, R has cR classes in its class diagram and sR
sequence diagrams. Let minC and maxC be the smaller and
larger of the values cQ and cR. Likewise, let minS and maxS
be the smaller and larger of the values sQ and sR. A suitable
encoding of a chromosome to determine a mapping of
entities in Q to entities in R is shown in Fig. 3. The
chromosome has two parts. The first part of the chromosome
handles the mapping of classes in the two class diagrams to
be compared, while the second part manages the mapping of
sequence diagrams in Q and R. For example, the 2nd, 5th
and maxCth class of the requirement having more classes is
mapped to the 1st, 2nd and 3rd classes of the requirement

A1

B1 C1

A2

B2 C2

:B1 :C1

:C2 :B2

1

a) b)

c) d)

A3

B3 C3

:B3 :C3

e) f)

D3

:D3

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

161

having fewer classes. The mapping of sequence diagrams
can be inferred similarly from the second part of the
chromosome.

Mapping of state machine diagrams in Q and R is not
captured in the chromosome because the mapping is
implicitly derived from the mapping of classes in the first
part of the chromosome. We are currently designing a multi-
objective fitness function which will be an aggregate of the
structural, functional, and behavioral similarity values. Each
of the three similarity values will be computed using
appropriate similarity scoring algorithms.

Our proposed retrieval approach properly handles the
issue of consistent mapping of classes in class diagrams and
sequence diagrams because the classes are first mapped (in
the first part of the chromosome), then the established
mappings are utilized during the computation of functional
similarity values.

As previously explained, consistent mapping of classes in
class diagrams and state machine diagrams are implicitly
handled. Once a pair of classes has been mapped, the state
machine diagrams depicting the behavior of objects of both
classes can be compared using a behavioral similarity
scoring algorithm.

Figure 3. Chromosome design for multi-view retrieval using GA.

The second part of the chromosome handles the mapping
of multiple sequence diagrams in two requirement
specifications. We have avoided using nested levels of GA
similar to the technique in [13] due to the computational
complexity of such approach. Instead, we use a multi-
objective fitness function. It is also possible to exhaustively
compute the similarity scores between pairs of sequence
diagrams in the two models then apply a combinatorial
optimization algorithm such as Hungarian Algorithm to
determine an optimal functional similarity score. We expect
this approach to be computationally more expensive than our
proposed approach and plan to verify this empirically.

VI. CONCLUSION AND FUTURE WORK

Software is typically modeled from at least three
perspectives: structural view, behavioral view and functional
view. In this work, we have classified previous UML reuse
work as either multi-view or single-view, depending on
whether or not the existing work has considered UML
artifacts representing more than one view during retrieval.

We have also raised three issues regarding mapping of
entities during multi-view retrieval. We noted that none of
the existing multi-view retrieval studies has addressed these
issues. A framework for software reuse incorporating multi-
view retrieval has been presented. We have shown how GA
can be used within the framework to tackle the raised issues.

Our work is currently ongoing hence it is far from being
complete. We are currently fine-tuning our similarity scoring
algorithms for structural, functional and behavioral views.
Furthermore, standard Information Retrieval measures for
ranked retrieval such as Mean Average Precision and R
Precision will be used to evaluate our reuse system. In
addition, we plan to develop a CASE tool that implements
our framework. The CASE tool will accept UML models in
XMI format, which is widely supported by prominent CASE
tools.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at King
Fahd University of Petroleum & Minerals (KFUPM) under
Research Grant 11-INF1633-04.

REFERENCES

[1] W. B. Frakes and K. Kang, "Software Reuse Research: Status and
Future," IEEE Trans. Softw. Eng., vol. 31, pp. 529-536, 2005.

[2] I. Sommerville, Software Engineering, 7th ed.: Pearson Addison
Wesley, 2004.

[3] S. R. Schach, Object-Oriented Software Engineering. New York:
McGraw-Hill, 2008.

[4] M. Ahmed, "Towards the Development of Integrated Reuse
Environments for UML Artifacts," in ICSEA 2011, The Sixth
International Conference on Software Engineering Advances, 2011,
pp. 426-431.

[5] J. L. Cybulski, R. D. B. Neal, A. Kram, and J. C. Allen, "Reuse of
early life-cycle artifacts: workproducts, methods and tools," Ann.
Softw. Eng., vol. 5, pp. 227-251, 1998.

[6] A. Prasad and E. K. Park, "Reuse system: An artificial intelligence -
based approach," Journal of Systems and Software, vol. 27, pp. 207-
221, 1994.

[7] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, 2nd ed.: Addison-Wesley, 2005.

[8] Object Management Group (OMG), "Unified Modeling Language
Superstructure Specification V2.4.1," 2011.

[9] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L. Ferreira,
and C. Bento, "Case Retrieval of Software Designs using WordNet,"
in European Conference on Artificial Intelligence (ECAI 02), 2002,
pp. 245-249.

[10] K. Robles, A. Fraga, J. Morato, and J. Llorens, "Towards an
ontology-based retrieval of UML Class Diagrams," Information and
Software Technology, vol. 54, pp. 72-86, 2012.

[11] R. A. Rufai, "New Structural Similarity Metrics for UML Models,"
M.Sc. Thesis, King Fahd University of Petroleum and Minerals,
Saudi Arabia, 2003.

[12] H. O. Salami and M. Ahmed, "A Framework for Class Diagram
Retrieval Using Genetic Algorithm," in The 24th International
Conference on Software Engineering and Knowledge Engineering
(SEKE 2012): Knowledge Systems Institute Graduate School, 2012,
pp. 737-740.

3 minS … 2 1 2 … minC

1

2 5 maxC 1

4 maxS 8 1 3

Class Mappings

Sequence Diagrams’

Mappings

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.25 e-ISSN: 2251-7545

162

[13] A. Ahmed, "Functional similarity metric for UML models," M.Sc.
Thesis, King Fahd University of Petroleum and Minerals, Saudi
Arabia, 2006.

[14] W. N. Robinson and H. G. Woo, "Finding Reusable UML Sequence
Diagrams Automatically," IEEE Softw., vol. 21, pp. 60-67, 2004.

[15] Y. Kotb, "Applying the Textual Entailment Approach to Automatic
Reusable Software," in The 7th International Conference on
Informatics and Systems (INFOS), 2010, pp. 1-6.

[16] B. Bonilla-Morales, S. Crespo, and C. Clunie, "Reuse of Use Case
Diagrams: An Approach Based on Ontologies and Semantic Web
Technologies," International Journal of Computer Science Issues, vol.
9, pp. 24-29, 2012.

[17] T. A. Alspaugh, A. I. Ant, T. Barnes, and B. W. Mott, "An Integrated
Scenario Management Strategy," in Proceedings of the 4th IEEE
International Symposium on Requirements Engineering: IEEE
Computer Society, 1999, pp. 142-149.

[18] M. C. Blok and J. L. Cybulski, "Reusing UML Specifications in a
Constrained Application Domain," in Proceedings of the Fifth Asia
Pacific Software Engineering Conference: IEEE Computer Society,
1998.

[19] H. B. Khalifa, O. Khayati, and H. H. B. Ghezala, "A Behavioral and
Structural Components Retrieval Technique for Software Reuse," in
Proceedings of the 2008 Advanced Software Engineering and Its
Applications: IEEE Computer Society, 2008, pp. 134-137.

[20] D. Bildhauer, T. Horn, and J. Ebert, "Similarity-driven software
reuse," in Proceedings of the 2009 ICSE Workshop on Comparison

and Versioning of Software Models: IEEE Computer Society, 2009,
pp. 31-36.

[21] G. Engels, B. Opdyke, D. Schmidt, F. Weil, M. ÅšmiaÅ‚ek, J.
Bojarski, W. Nowakowski, A. Ambroziewicz, and T. Straszak,
"Complementary Use Case Scenario Representations Based on
Domain Vocabularies," in Model Driven Engineering Languages and
Systems. vol. 4735: Springer Berlin Heidelberg, 2007, pp. 544-558.

[22] F. M. Ali and W. Du, "Toward reuse of object-oriented software
design models," Information and Software Technology, vol. 46, pp.
499 - 517, 2004.

[23] W.-J. Park and D.-H. Bae, "A two-stage framework for UML
specification matching," Inf. Softw. Technol., vol. 53, pp. 230-244,
2010.

[24] P. Roques, UML in Practice: The Art of Modeling Software Systems
Demonstrated through Worked Examples and Solutions: Wiley, 2004.

[25] J. Iivari, "Object-orientation as structural, functional and behavioural
modelling: a comparison of six methods for object-oriented analysis,"
Information and Software Technology, vol. 37, pp. 155-163, 1995.

[26] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques: John Wiley and Sons, 1998.

[27] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W.
Premerlani, Object-oriented modeling and design, First ed.: Prentice
Hall, 1991.

* Corresponding Author:

Hamza Onoruoiza Salami,

Information and Computer Science Department,

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia,

Email: hosalami@kfupm.edu.sa Tel:+966-3860-7356

tel:+966-3860-7356

