
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

169

Transition from Analysis to Software Design: A

Review and New Perspective

Hamdi A. Al-Jamimi*, Moataz Ahmed

Information and Computer Science Department

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Email: {aljamimi, moataz}@kfupm.eu.sa

Abstract—Analysis and design phases are the most crucial

part of the software development life-cycle. Reusing the artifacts

of these early phases is very beneficial to improve the

productivity and software quality. In this paper we analyze the

literature on the automatic transformation of artifacts from the

problem space (i.e., requirement analysis models) into artifacts in

the solution space (i.e., architecture, design and implementation

code). The goal is to assess the current state of the art with

regard to the ability of automatically reusing previously

developed software designs in synthesizing a new design for a

given requirement. We surveyed various related areas such as

model-driven development and model transformation techniques.

Our analysis revealed that this topic has not been satisfactorily

covered yet. Accordingly, we propose a framework consists of

three stages to address uncovered limitations in current

approaches.

Keywords—- software analysis, software design, design reuse;

model transformation.

I. INTRODUCTION

In reality, the software development process can be seen as
a series of different phases. Each phase, in this process,
produces new models by utilizing the models built during its
preceding phases. Analysis and design represent the most
crucial part of the software development life-cycle. In this
context, the earlier artifacts represent the problem space (i.e.,
the problem to be solved). These artifacts include the software
requirements specifications (SRS), conceptual models, and
analysis class diagrams. On the other hand, the solution space
(i.e., the solution to the problem) can be represented by the
subsequent artifacts including the architectural documents,
detailed design class and sequence diagrams. Particularly, the
analysis phase is to related to understanding the given problem,
while the design phase is related to the formation of a solution
for the analyzed problem [1]. The design task is seen as a more
complex than the analysis phase. That is because most of the
decisions made at the design, in turn this stage has a
considerable influence on its subsequent phases. Therefore,
design phase requires more knowledge and experience from the
developers.

Software reuse can be conducted at any stage of the
software development process. Various levels of reuse can be

conducted; analysis, design, code, and test level [2]. Software
reuse is considered as a promising way to improve software
development productivity and quality. Software developers
realize that reuse of early life-cycle artifacts constructed at the
beginning of the software development life-cycle has its own
importance where it allows utilizing all the related late artifacts
during the software development.

The goal of this work is to move from the analysis models
(defined as the problem space) toward the software design
(defined as the solution space) by reusing previously developed
software. That is, based on the given requirements the existing
requirement-design pairs from previous systems can be utilized
to build the new system’s design. Such that the resultant design
holds certain preferred quality properties. An overview of
intended process is demonstrated in Figure 1. The main idea of
this work is a part of development of environments integrated
with CASE tools and capable facilitating early-stage artifacts
reuse [3]. A major focus of the Integrated Reuse Environment
(IRE) is to offer tools to facilitate reusing design and later
artifacts based on matching requirements. In other words, for
new requirements the IRE should facilitate assessing the
similarity between new requirements to the requirements of
completed projects to provide closest match so that their design
counterparts can be reused with minimal effort.

In this paper, we introduce the problem of reusing
previously developed designs to come up with a new design
which is suitable for the presented requirement. In our search
for a suitable solution to the specified problem of transition
from software analysis to software design utilizing the
analysis-design pairs, we reviewed many approaches in the
literature. We explored model-driven development (MDD) and
model transformation approaches including rules-based,
pattern-based and example-based techniques. As a final point,
we present a framework that consists of three stages to mine
the repository with the aim of reuse, refine, and synthesis
existing designs to come up with a design satisfying the new
requirement.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

170

Fig. 1. High level view of proposed process

The rest of this paper is organized as follows; section II
details the problem statement. A comprehensive literature
survey for the possible solutions is introduced in Section III.
Section IV describes the proposed framework to solve the
described problem. Finally, Section V concludes the paper and
presents the suggested future works.

II. PROBLEM STATEMENT

The area of research mentioned earlier is surrounded with a
number of difficulties.

First, in the existing widely used software development
methodologies, it is noticeable the transition from the analysis
artifacts to the design artifacts is unclear. Thus, obviously,
there is a fundamental gap between the analysis phase and the
design phase. The difficulty in moving from analysis to design
is caused by the fact that the artifacts of analysis phase and
design phase represent different things. While the analysis
phase is linked to a human activity, the design phase is related
more to the information technology systems [4]. For instance,
although object-oriented paradigm is the dominant software
development approach in the industry, it is still partially
unclear how analysis relates to design in this paradigm. Even
though, several benefits attributed to this paradigm, it has been
unsuccessful in finding a way to systematically transition from
the analysis phase to the design phase [4].

Second, the existing methodologies are general guidelines,
thus software designers heavily rely on their experience from
the development of previous systems to design new ones. As
results, an essential part of the achieved transition relies more
on the designer’s experience and their subjective measures. In
like this situations, they rely little on defined processes and
methodologies.

The design phase is a multifaceted problem, where the
design phase can be divided into two sub phases: conceptual
design and detailed design. Since the design phase represents
the solution space, so in the conceptual design the solution is
analyzed in order to define the entities and subsystems that
comprise the design model. This can be viewed as a high-level
task where the main concerns are related with the specification
phase and not with the implementation phase. Roughly
speaking, to be able to satisfy the specification produced in the
analysis phase, the conceptual design identifies the software
architecture. On the other hand, the objective of the detailed
design is to prepare the software’s implementation phase. In
turn, the detailed design model serves as a high-level view of
the source code. The algorithms and the data structures are
defined, as well as the organization and key features are
described for the implementation phase.

 What is noticeable is that, to translate the requirements into
a high-level design the designers and developers spend
significant amounts of time to accomplish this task. Although
of that, there are methodologies that describe and manage
requirements and design artifacts.

Last, reusing the previously developed designs is not trivial
tasks especially when there is a possibility of selecting the
appropriate building blocks from a variety of available designs
and synthesis them to generate the intended design.

Indeed, this problem has two dimensions of difficulty;
finding the needed blocks among all the blocks in the design,
then combining these obtained blacks to represent a complete
design.

Therefore, there is a real problem may encounter the
developer in the three cases: first case, when adapting parts of
design if none of the existing parts satisfies the need of reusing.
Second case, when combine fragments of designs to come up
with a design satisfying the given requirement. Third case, if
none of the existing designs or parts of them satisfies the new
requirements, there is no a clear mapping that guides the
transition from the problem space (software analysis) to the
solution space (software design).

Based on that, there is a need for intelligent tools that
support the transition from software analysis to software design
utilizing the analysis-design pairs. The purpose of these tools is
not only to implement the common software reuse techniques,
also to provide support for more complex reasoning abilities
and exploration of new design spaces. Moreover, based on the
observations from the previously developed systems, the
intelligent tools may boost more creative designs. Therefore,
the idea of this work is to building a framework that would
provide assistance to the software designer, in tasks such as
exploration of the design space.

As shown in Figure 1, the objective is to reuse, refine and
generate a design for the new requirement by utilizing the
available requirement-design pairs in the repository. This might
be achieved by retrieving the corresponding design to the
matched requirements, or by generate new design based on
rules extracted for the existing examples. To extract such rules
from the existing examples, “learning by examples” should be
utilized. Moreover, in order to mine the repository for the
suitable blocks or fragments of designs and to combine these
collected fragments from different designs; machine learning
techniques are needed for selection, permutation, and
integration.

III. LITERARTURE SURVEY

In this section we present a comprehensive literature survey
where we surveyed different areas trying to find out a solution
for the specified problem. The survey addresses two views:
transition from analysis to design, and model driven
development including the model transformations.

A. Transition from Analysis to Design

In reality it is difficult to move from software analysis to
software design automatically. Thus, recognizing the
differences between what is modeled in the phases can help

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

171

significantly to come up with a more conscious development
approach.

Kaindl [4] studied analysis and design models of real-world
projects, to validate his view about the difficulty of the
transition from analysis to design of software. He emphasizes
that, the transition between analysis (requirements phase) and
software design is an issue regardless of whether developers
use an object-oriented approach or not.

Analyzing the requirements and building the models of
analysis and design are cumbersome and complicated tasks
which require automated support. The Natural Language (NL)
is used frequently to describe the software requirements. In a
typical software industry, SRS is written in NL to enhance
communication between different stakeholders. Due to its
inherent ambiguity, it is particularly not easy task to generate
design objects from NL specification. However, the structured
and constrained NL can be utilized to improve the correctness
of the design.

Most of the work related to the moving from requirements
to analysis and then to design only focused on the first
transition based on NL processing [5-17]. Some other studies
tried to obtain class diagram form use cases [18-20], however
the resultant class diagrams still in the high level description.
Similarly, other researchers [21-23] tried to generate other
analysis diagrams from use cases.

As stated by [24] most often software architecture is
identified formally, while software requirements are captured
informally. Therefore, there is a gap when transition from the
requirements to architecture. In this regard, a substantial
amount of research has been conducted to bridge this semantic
gap. Grunbacher et al. [24] utilize intermediate models that are
closer to software architecture to introduce mapping from
requirements to architecture. For this purpose, they propose an
approach called CBSP (abbreviation of Component, Bus,
System, and Property). They have applied CBSP within the
context of different requirements and architecture definition
techniques. Liu et al. [25] analyze the gap between the software
requirements and the software architecture to identify the
inadequacy of mapping approaches in traditional structured
method and object-oriented method. Based on that, they
propose a feature-oriented mapping and transformation
approach from requirements to software architecture. Kaindl et
al. [26] suggest the use of model driven approaches to ease the
mapping from the software requirements to the architectural
design.

Despite of the scientific contributions of the mentioned
studies, there is still lack of effective solutions. As shown in
earlier work by Kaindl, object-oriented domain models cannot
be simply become object-oriented design models. Neither is it
possible to transform domain models to design models. There
would be the implicit assumption that each and every object
class in the domain model would finally end up as several
object classes in the detailed design and consequently the
implementation.

Larmen also states in [27] that domain models represent
real-world concepts and not software objects and thus cannot
be transformed automatically to a software design, but having
mappings between domain and design classes lowers the

representational gap between our mental model and the
software. Even though automatic transformation seems not
possible without intelligent problem solvers that establish
traces (like in [28]) and mappings between a domain and
design model. The mappings from requirements to design may
be viewed as special and elaborate forms of traceability links.

All of these concerns motivated Kaindl and Falb [29] to ask
“Can the transition from requirements to software design be a
model-driven transformation or just a mapping?”.

Based on that, they further discussed whether model-driven
transformations are appropriate and applicable for moving
from requirements to software design.

B. Model Driven Development

MDD is an emerging software development technology
introduced for the purpose of bridging the gap between the
problem space and solution space. In this technology, the
models are considered the primary artifacts of the development
process; also they contain the needed information that supports
its different phases. This sequence of models can be created,
refined and maintained. Hence, software designers and
developers can concentrate on high-level problem solving
rather than focusing on low-level implementation details [30].

MDD supports the reuse through different levels of
abstraction provided by the models at different stages of the
development life cycle. It distinguishes between three types of
models:

 Computation Independent Model (CIM) focuses on the
domain a higher level of abstraction instead of showing
the details of the system structure.

 Platform Independent Model (PIM) designed without
considering the underlying platform or any other
technical considerations.

 Platform Specific Model (PSM) includes the technical
considerations and the underlying platform.

CIM to PIM- The transformation from CIM to PIM has no
a lot of attention of the researchers, as well as there is no
comprehensive literature survey available in the specific
domain of CIM to PIM transformation. Reviewing and
analyzing the existing approaches would facilitate determining
the gaps, weaknesses and needed enhancement for this kind of
transformation. In addition, it might give an idea about the
automatic moving from CIM to PIM if possible. Table 1
summarizes a review and comparison for the existing CIM-to-
PIM transformation approaches based on different evaluation
criteria which include the following:

1. CIM consists of two aspects: the business process model
(BP) shows all the business activities, and the requirement
model (RM) which specifies the system.

2. CIM representation: UML, BP notations (BPN), and Data
Flow Diagram (DFD) are used to represent the business
process. Use Case (UC) and Feature model (FM) are used
to describe the requirements.

3. PIM aspects: include functional (F), structural (S), and
behavioral (B) perspectives.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

172

4. PIM representation: UC, Activity Diagram (AD), Sequence
Diagram (SD), and Class Diagram (CD).

5. Transformation Mechanism used for transition.

6. Automation: to which extent the proposed approach was
automated: fully or partially automated.

TABLE I. SUMMARY OF THE CIM-TO-PIM TRANSFORMATIONS

Study
Evaluation Criteria

CIM

aspects
CIM Representation

PIM

aspects
PIM Representation Transformation Mechanism Automated

Zhang et al. [31] RM FM S SW Arch Responsibilities Semi

Kardoš et al. [32] BM DFD F,B,S UC, SD, AD, CD Manual Manual

Kerraf et al. [33] BM, RM AD S CD Manual Manual

Cao et al. [34] RM FM S SW Arch Patterns Semi

Castro et al. [35] BM, RM e3 value model BPMN F,B UC, Service process Meta-models Mappings -ATL Partial

Rodríguez et al. [36] BM BPMN F UC QVT and refinements rules, checklists Semi

Raj et al. [37] BM SBVR B,S AD, SD, CD Manual Manual

Suarez et al. [38] BM AD S CD Manual Manual

PIM to PSM – Since PIM reflects the features of the
problem domain, the model is transformed into PSM in order
to implement the PIM. That is, to consider implementation
issues and the underlying platform [30]. PSM may contain
features that are presented in PIM, thus PSM is not necessarily
a refinement of the PIM [39]. The platform-specific details
need to be generated using different tools in order to automate
the generation of those details. For defining transformations,
those tools offer three different approaches: first, direct model
manipulation which can operate on a set of procedural APIs.
Second, intermediate representation deals with models in a
standard form such as XML. Third, transformation language
support which expresses, composes, and applies
transformation explicitly [40].

In this regard, many PIM to PSM transformations studies
have been conducted in the literature. The model-to-model
transformation approaches can be categorized into: operational
and declarative. The first category is based on rules that
explicitly identify how to create the target models elements
starting from the source model elements. The second category
gives a explanation of the mappings between the source and
target models focusing on the relation hold between two
models.

Informative surveys of model transformation languages can
be found in [41-44]. Due to the limitation of the paper size we
just refer to the previous surveys that have been conducted on
this topic [41-43]. Czarnecki et al. [41] classify hierarchically
the specification of model transformation approaches based on
feature diagrams into a number of classes. The feature model
offers a terminology used to describe the model transformation
approaches as well as to make the different design choices for
such approaches explicit. Mens et al. [42] provide a multi-
dimensional taxonomy of model transformations. The
introduced taxonomy is more targeted towards techniques and
formalisms supporting the activity of model transformation.
The main purpose of this taxonomy is to position model
transformation tools and techniques within the domain; as well
as to identify and evaluate tools or technologies for a specific
model transformation activity.

A conclusion to be drawn from studying the existing rule-
based and pattern-based transformation approaches is that they
are often based on empirically obtained rules. When
identifying the transformation rules and automating the
transformation process most of the researcher follow a
common approach which is the use of a model transformation
language. These languages still suffer some limitations,
although most of these languages are able to implement
complex and large-scale model transformation tasks. The users
may encounter some challenges when dealing with specific
transformation language specially the users who are unfamiliar
with that language.

In addition, it might be a difficult task to define, express,
and maintain the transformation rules, particularly for non-
widely used formalisms. Another dimension of difficulty may
appear when the declarative expressions are not at the proper
level of abstraction for an end-user. This may affect negatively
the learning curve and training cost.

Moreover, since the transformation rules are usually
defined at the meta-model level, there is a need to understand
well the abstract syntax of the source and target models. The
semantic interrelationships between these models also need to
be known. However, in some situations, it is difficult to
expose the domain concepts because they might be hidden in
the meta-model.

These implicit concepts make writing transformation rules
demanding. Accordingly, some domain experts may encounter
difficulties when trying building model transformations for the
domain in which they have extensive experience. This because
of the difficult when specifying transformation rules at the
meta-model level, and the associated learning curve.

C. Example-Based Model Transformation

To tackle the mentioned negative aspects of the rule-based
and pattern-based model transformations, a number of
example-based approaches have been proposed for model
transformations. Example-based model transformation
(EBMT) is a recent trend of research aiming at learning a
transformation between the source and target from existing

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

173

examples. The form of the transformation example is specified
by a source model, a target model and mappings between
source elements and the corresponding target elements. EBMT
allows defining transformations using examples represented in
concrete syntax instead of using the computer internal
representation of models.

In general, here we can distinguish between two kinds of
approaches. First, the demonstration-based approaches where
the model transformation is demonstrated in the modeling
editor. The example models are modified. Then the resultant
modifications are recorded. The general transformation is
derived from the concrete changes, then it may be replayed on
other models. Second, the example-based approaches where
the input, output models, and the correspondences between
them are given by the user rather than demonstrating the
transformation in modeling editors.

Several Model Transformation By-Demonstration (MTBD)
approaches have been proposed for reducing the effort of
writing model transformation rules manually. MTBD
approaches record actions performed on example models to
derive general operations. Approaches of MTBD only for in-
place transformations proposed by Sun et al. [45] and Brosch et
al. [46].

MDD aims to use platform independent modeling
techniques in order to abstract from the implementation level of
software systems. On the other hand, the aim of by-example
approaches is simplicity the development of systems. Instead
of the direct developing, it is possible to utilize the existing
examples to draw a clear map. Again, in MDD different
transformation scenarios occur between the various models,
thus different by-example approaches can be employed for
these transformations. Therefore, it is worthy and promising
idea to merge both paradigms.

Recently, a number of EBMT approaches have been
proposed such as [47-51]. Kappel et al. [52] introduce an
overview about the different example-based approaches. They
divide them into two categories: demonstration-based and
correspondence-based approaches. For each, they discuss their
concepts and previously proposed techniques.

IV. THE PROPOSED FRAMEWORK

This section details the proposed framework addressing the
aforementioned limitations in the current approaches. In order
to generate the appropriate design for the given new
requirement, three different stages have been proposed as
Figure 2 depicts in details.

For the given problem “new requirement” it is supposed to
obtain a solution “appropriate design” in one of the three
different stages. Means that when obtaining a solution in the
first stage, the process terminates and return the acquired
solution, without need for trying the second and third stages.
Similarly when a solution is obtained in the second stage, saves
us from moving to the third stage.

Assuming we have previously developed requirement-
design pairs repository that can be utilized to build a rule base.
Machine learning help extract the desired knowledge from
existing examples and extensively ease the development of
formal rules. Thus, some machine learning techniques can be
utilized to find mappings between the requirements and design
pairs, based on the available examples. The mappings can be
recognized and formalized as rules stored in the rule base to be
applied later in the third stage in our proposed framework.

A. First stage

Retrieval process can be viewed as two tasks: retrieval of
similar requirements from the requirements-design pairs (the
retrieval task), and ranking of these requirements against the
given problem (the ranking task). The retrieval task is usually
performed based on matching process using similarity metrics.
Each of the retrieved requirement-design pair has a degree of
similarity to the given requirement. If, the retrieved
requirement from the repository shows a satisfied matching
which is above a predefined threshold, then the corresponding
design can be retrieved to be the new design for the given
problem. Otherwise, in case the retrieved pairs do not show a
high matching, then we move to the second stage.

B. Second stage

If the similarity metrics shows unsatisfied matching to the
requirements stored in the repository then the new
requirements will be compared against the generic analysis
model.

Indeed, the generic analysis model contains all the patterns
as well as the variations of the stored analysis models. Thus,
we need to perform permutations by utilizing one of the
heuristic search techniques (such as genetic algorithms,
simulated analyzing or particle swarm algorithm) to produce an
instance of the generic analysis model that excludes or includes
some of the variation. Afterwards, the produced instance of the
generic model is evaluated against the given requirement. The
matching result is evaluated again, and the permutation is
produced again and evaluated till we get the desired similarity
percentage. Then the mapping from the instance, showing the
best matching, to the generic design model can be utilized to
retrieve the corresponding design from the generic design
model. It supposed that, the generic design model contains all
the patterns and the variations of the stored design models.

In case the instances of the generic analysis model didn’t
show satisfied matching to the given requirements, then the
third stage is applied in order to combine and refine various
designs existing in the repository.

C. Third Stage

This stage consists of three main parts:

First part, the ranked pairs retrieved form stage one are
used to generate the design. Matching and merging is applied
on the top of the ranked pairs to produce an initial design. Due
to the huge search space and the enormous number of

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

174

possibilities that can be utilized for merging, definitely
heuristics algorithms are needed for this purpose.

Second part of this stage, relies on applying the rules,
extracted from the examples, to improve the initial design. The
outcome of this part is improved design that is presented to an
expert to evaluate the applied rule.

Third part of this stage is the validation of the rules to
update the rules and provide feedback to the rule base.
Reinforcement learning can be utilized in this part. A reward

function, based on the consequences of applying the rules, will
evaluate the rule by numeric rewards and punishments in order
to maximize its rewards and to learn next time to which extent
the rule can be applied or ignored.

Fig. 2. An overview of the proposed framework.

V. CONCLUSION

In this paper, we introduced the problem of reusing
previously developed designs to come up with a new design
which is suitable a solution for a given presented requirement.
We explored several research areas that may bring in a satisfied
solution. The areas facilitate the transition from analysis to
design such as model-driven development, model
transformation including rules-based, pattern-based and
example-based techniques. Accordingly, we proposed a
framework that consists of three stages to mine the repository
with the aim of reuse, synthesis, and refine the exits design to
come up with a design satisfying the new requirement.
Machine learning techniques and reinforcement learning are
needed to accomplish the proposed solution and be able to
synthesis and refine a design for a given requirement.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research at King Fahd
University of Petroleum and Minerals, Saudi Arabia, under
Research Grant 11-INF1633-04.

REFERENCES

[1] Rumbaugh, J., et al., Object-Oriented Modeling and Design1991:
Prentice Hall

[2] Coulange, B., Software Reuse1997, London: Springer Verlag.

[3] Ahmed, M. Towards the Development of Integrated Reuse
Environments for UML Artifacts. in ICSEA 2011 : The Sixth
International Conference on Software Engineering Advances. 2011.
Barcelona, Spain.

[4] Kaindl, H., Difficulties in the Transition from OO Analysis to Design.
IEEE Software, 1999. 16: p. 94- 102.

[5] Montes, A., et al., Conceptual Model Generation from Requirements
Model: A Natural Language Processing Approach, L.V. 5039, Editor
2008, Springer. p. 325-326.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

175

[6] Diaz, I., et al., Integrating Natural Language Techniques in OO-
Methods, in Computational Linguistics and Intelligent Text Processing,
LNCS2005, Springer p. 177-188.

[7] Yue, T., L.C. Briand, and Y. Labiche, An Automated Approach to
Transform Use Cases into Activity Diagrams. Modelling Foundations
and Applications, LNCS, 2010. 6138: p. 337-353.

[8] Kalaivani, S., et al. UCDA: Use Case Driven Development Assistant
Tool for Class Model Generation. in In Proc. of 16th Int. Conf. on
Software Engineering and Knowledge Engineering. 2004. Banff,
Canada.

[9] Overmyer, S.P., L. Benoit, and R. Owen. Conceptual modeling through
linguistic analysis using LIDA. in In Proc. of the 23rd Int. Conf. of
Software Engineering (ICSE). 2001. Toronto, Canada.

[10] Deeptimahanti, D.K. and R. Sanyal, An Innovative Approach for
Generating Static UML Models from Natural Language Requirements.
Advances in Software Engineering, Communications in Computer and
Information Science, 2009. 30: p. 147-163.

[11] Kumar, D.D. and R. Sanyal. Static UML Model Generator from
Analysis of Requirements (SUGAR). in International Conference on
Advanced Software Engineering and Its Applications (ASEA 2008).
2008.

[12] Deeptimahanti, D.K. and M.A. Babar, An Automated Tool for
Generating UML Models from Natural Language Requirements., in
IEEE / ACM Int. Conf. on ASE2009.

[13] Insfrán, E., O. Pastor, and R. Wieringa, Requirements Engineering-
Based Conceptual Modeling. Requirements Engineering Journal, 2002.
7(2): p. 61-72.

[14] More, P. and R. Phalnikar, Generating UML Diagrams from Natural
Language Specifications. International Journal of Applied Information
Systems, 2012. 8.

[15] Bajwa, I.S., A. Samad, and S. Mumtaz, Object Oriented Software
Modeling Using NLP Based Knowledge Extraction. European Journal of
Scientific Research ISSN 1450-216X, 2009. 35 p. 22-33

[16] Ibrahim, M. and R. Ahmad, Class diagram extraction from textual
requirements using Natural language processing (NLP) techniques, in In
proceedings of the Second International Conference on Computer
Research and Development.2010.

[17] K.Shinde, S., V. Bhojane, and P. Mahajan, NLP based Object Oriented
Analysis and Design from Requirement Specification. International
Journal of Computer Applications (0975 - 8887), June 2012. 47(21).

[18] Santos, M.Y. and Ricardo J. Machado On the Derivation of Class
Diagrams from Use Cases and Logical Software Architectures, in Fifth
International Conference on Software Engineering Advances2010

[19] Giganto, R. and T. Smith. Derivation of Classes from Use Cases
Automatically Generated by a Three-Level Sentence Processing
Algorithm. in Proc. of the Third International Conference on Systems
IEEE Computer Society. 2008.

[20] Sarkar, S., V.S. Sharma, and R. Agarwal, Creating Design from
Requirements and Use Cases: Bridging the Gap between Requirement
and Detailed Design, in Proceedings of ISEC '12, Feb. 22-252012
Kanpur, UP, India.

[21] Yue, T., L.C. Briand, and Y. Labiche, Automatically Deriving a UML
Analysis Model from a Use Case Model, in Simula Research
Laboratory, Technical Report (2010-15)2010.

[22] Yue, T., L. Briand, and Y. Labiche, Facilitating the Transition from Use
Case Models to Analysis Models: Approach and Experiments, in Simula
Research Laboratory, Technical Report (2010-12)2010.

[23] Yue, T., S. Ali, and L. Briand. Automated Transition from Use Cases to
UML State Machines to Support State-Based Testing. in In: ECMFA.
2011.

[24] Grunbacher, P., A. Egyed, and N. Medvidovic, Reconciling software
requirements and architectures with intermediate models. Softw. Syst.
Model, 2003. 3(3): p. 235-253.

[25] Liu, D. and H. Mei, Mapping requirements to software architecture by
feature-orientation. Requirements Engineering Journal, 2003. 25(2): p.
69-76.

[26] Kaindl, H. and J. Falb. Can We Transform Requirements into
Architecture? in in 3rd Int’l Conf. on Software Engineering Advances.
2008. IEEE Comp. Soc.

[27] Larman, C., Applying UML and Patterns, ed. t. edn.2004: .Prentice Hall
PTR.

[28] Ebner, G. and H. Kaindl, Tracing all around in reengineering. IEEE
Software, 2002 p. 70-77.

[29] Kaindl, H. and J. Falb. From Requirements to Design: Model-driven
Transformation or Mapping. in in Proc. First International Workshop on
Model Reuse Strategies (MoRSe 2006), . 2006. Warsaw, Poland.

[30] Kleppe, A., J. Warmer, and W. Bast, MDA Explained, The Model-
Driven Architecture: Practice and Promise2003: Addison Wesley.

[31] Zhang, W., et al. Transformation from CIM to PIM: A Feature-Oriented
Component-Based approach. in in MoDELS, Montego Bay. 2005.
Jamaica.

[32] Kardoš, M. and M. Drozdová, Analytical method of CIM to PIM
transformation in Model Driven Architecture (MDA). Journal of
information and orgnizational sceinces, 2010. 34: p. 89-99.

[33] Kherraf, S., É. Lefebvre, and W. Suryn. Transformation from CIM to
PIM using patterns and Archetypes. in 19th Australian Conference
onSoftware Engineering, 2008. ASWEC 2008. . 2008.

[34] Cao, X., H. Miao, and Y. Chen, Transformation from computation
independent model to platform independent model with pattern. Journal
of Shanghai University (English Edition) 2008. 12 (6): p. 515-523.

[35] Castro, V.D., E. Marcos, and J.M. Vara, Applying CIM-to-PIM model
transformations for the service-oriented development of information
systems. Information and Software Technology, 2011. 53 p. 87-105.

[36] Rodrguez, A., et al., Semi-formal transformation of secure business
processes into analysis class and use case models: An MDA approach.
Information and Software Technology, 2010. 52 p. 945-971.

[37] Raj, A., T.V. Prabhakar, and S. Hendryx. Transformation of SBVR
Business Design to UML Models. in ISEC’08, February 19-22. 2008.
Hyderabad, India.

[38] Suarez, E., M. Delgado, and E. Vida. Transformation of a Process
Business Model to Domain Model. in Proceedings of the World
Congress on Engineering 2008 Vol I, WCE 2008, July 2 - 4. 2008.
London, U.K.

[39] Oliver, I., Model Based Testing and Renement in MDA Based
Development. In: Pierre Boulet (ed.) Advances in Design and
Specification Languages for SoCs. The ChDL Series, Springer, 2005.

[40] Sendall, S. and W. Kozaczynski, Model Transformation - The Heart and
Soul of Model-Driven Software Development. IEEE Software, Special
Issue on Model Driven Software Development, 2003: p. 42-45.

[41] Czarnecki, K. and S. Helsen, Feature-Based Survey of Model
Transformation Approaches. IBM Systems Journal, special issue on
Model-Driven Software Development, 2006. 45(3): p. 621-645.

[42] Mens, T. and P.V. Gorp, A Taxonomy of Model Transformation, in
Proc. Intl. Workshop on Graph and Model Transformation2003.

[43] Mens, T. and P.V. Gorp. A Taxonomy of Model Transformation and Its
Application to Graph Transformation. in Proceedings of the
International Workshop on Graph and Model Transformation. 2005.
Tallinn, Estonia.

[44] Biehl, M., Literature Study on Model Transformations, in Royal Institute
of Technology, Tech. Rep. ISRN/KTH/MMK/R-10/07-SE Jul. 2010.

[45] Sun, Y., J. White, and J. Gray. Model Transformation by Demonstration.
in In: Sch¨urr, A., Selic, B. (eds.) MODELS 2009. LNCS. 2009.
Springer, Heidelberg.

[46] Brosch, P., et al. An Example Is Worth a Thousand Words: Composite
Operation Modeling By-Example. in In: Sch¨urr, A., Selic, B. (eds.)
MODELS 2009. LNCS. 2009. . Springer, Heidelberg.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.27 e-ISSN: 2251-7545

176

[47] Varr´o, D. Model Transformation by Example. in In: Wang, J., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS. 2006. Springer,
Heidelberg.

[48] Wimmer, M., et al. Towards Model Transformation Generation By-
Example. in In: 40th Hawaiian Int. Conf. on Systems Science (HICSS
2007). 2007. IEEE Computer Society.

[49] Strommer, M. and M. Wimmer, A Framework for Model
Transformation By-Example: Concepts and Tool Support. Objects,
Components, Models and Patterns Lecture Notes in Business
Information Processing, 2008. 11: p. 372-391

[50] Garcıa-Magarino, I., J.J. G´omez-Sanz, and R. Fuentes-Fern´andez.
Model Transformation By-Example: An Algorithm for Generating
Many-to-Many Transformation Rules in Several Model Transformation
Languages. in In: Paige, R.F. (ed.) ICMT 2009. LNCS. 2009. Springer,
Heidelberg.

[51] Kessentini, M., H. Sahraoui, and M. Boukadoum, Search-Based Model
Transformation by Example. Software and System Modeling Journal-
Special Issue of MODELS08, 2010.

[52] Kappel, G., et al., Model Transformation By-Example: A Survey of the
First Wave, in Lecture Notes in Computer Science, Volume 7260, 2012.
p. 197-215.

* Corresponding Author:

Hamdi Ali Al-Jamimi,

Information and Computer Science Department,

King Fahd University of Petroleum and Minerals,

Dhahran, Saudi Arabia.

 Email: aljamimi@kfupm.edu.sa Tel: +966-596270853

mailto:aljamimi@kfupm.edu.sa

