
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

A Formal Semantic for UML 2.0 Activity Diagram based on Institution Theory

Amine Achouri

Laboratory LaTICE

ESSTT

University of Tunis, TUNISIA

Amine.Achouri@fst.rnu.tn

Leila Jemni ben Ayed

Laboratory LaTICE

ESSTT

University of Tunis, TUNISIA

Leila.Jemni@fsegt.rnu.tn

Abstract—Giving a formal semantic to an UML Activity

diagram (UML AD) is a hard task. The reason of this difficulty
is the ambiguity and the absence of a precise formal semantic

of such semi-formal formalism. A variety of semantics exist
in the literature having tackled the aspects covered by this
language. We can give as example denotational, functional

and compositional semantics. To cope with the recent tendency
which gave a heterogeneous semantic to UML diagrams, we
aim to define an algebraic presentation of the semantic of UML

AD. In this work, we define a formal semantic of UML 2.0 AD
based on institution theory. For UML AD formalism, which is
a graphical language, no precise formal semantic is given to it.

We use the institution theory to define the intended semantic.
Thus, the UML AD formalism will be defined in its own natural
semantic.

Keywords-Institution theory; UML 2.0 Activity Diagram;
Formal semantic;

I. INTRODUCTION

Model transformation is a critical process in software con-

struction and development. As increasingly larger software

systems are being developed, there is tendency to have solid

and effective tools to automatize the software development.

The specification of a software can be formal and (or)

graphical. For graphical formalisms, we can mention as

example UML models, UML class diagram, UML activity

diagram and interaction diagram. For the formal ones, logic

are increasingly used due to their mathematical background.

For example, Petri-net is used as a graphical and a formal

specification formalism. Logic is the language of formal

methods such that theorem proving and model checking.

To facilitate and to link graphical and formal language,

there is a massive need to make generic techniques for the

transformation of graphical models to formal notations. The

use of logic is difficult for non familiar with logical concepts

and specification. As a result, there is a need to provide the

possibility to make specifications in a modeling level.

Stakeholders can begin with a graphical model (possibly

with many system views). Then, with an automatic and

correct transformation they can to produce a specification

in a formal logic. In the context of logic, institution theory

has emerged as a framework allowing their study and the

different relation between them.

In our previous work [8], we used graph grammar to

define an automatic transformation between UML AD and

Event-B. Thanks to the notion of graph grammar, the au-

tomation aspect is given to the transformation. The semantic

equivalence between source and target model is not proved.

The reason is the absence of formal semantic for the source

and the target formalism. To overcome this drawback, we

use institution theory to make the required semantic for the

source formalism which is UML AD.

The first contribution aims to give institutional presenta-

tion of UML AD. In our knowledge, in the literature, no

proven institution for UML AD exists. This institutional

presentation define a formal semantic of UML AD. In addi-

tion, this algebraic presentation of the source formalism will

be a meta-level to study possible transformation to Event-B

models [8]. Thus, the study of some proprieties like model

amalgamation and theory co-limits of this formalism will be

enhanced [?]. Those notions play a key role in heterogeneous

specification approaches. The UML AD institution may be

used in a heterogeneous modeling language such UML

diagram like in [13].

The paper is organized as follows: in section 2 we present

the related works. Then in section 3, we recall institution

definition. Section 4 shows how to prove that UML AD

establish an institution. Section 5 give an example of UML

AD model and make focus in its institution. Finally, the last

section concludes our work.

II. RELATED WORKS

In literature, institution theory is largely used and studied.

We have three category of works based on institution theory.

The first category is interested on the use of institution

theory and its known concepts in the development of an

heterogeneous specification approaches. We mention the

approach of the heterogeneous specification in the tool

cafeOBJ [5]. This approach is based on a cube on eight

logic and twelve projections (defined as a set of institution

morphism and institution comorphism) [5]. It’s inspired by

the semantic based on Diaconescu’s notion of Grothendieck

institution [4]. Another approach is developed in the work

of Mossakowski [9] [2]. The heterogeneous logical envi-

ronment developed by the author is formed by a number

199

mailto:Amine.Achouri@fst.rnu.tn
mailto:Amine.Achouri@fst.rnu.tn
mailto:houri@fst.rnu.tn
mailto:Leila.Jemni@fsegt.rnu.tn
mailto:Leila.Jemni@fsegt.rnu.tn

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

of logical systems. These logical systems are formalized as

institutions linked with the concepts of institution morphism

and comorphism.

The second category of works focus on the use of in-

stitution theory in the specification of graphical formalism

such as UML diagrams. In this category, we mention the

work present in [13] [10] [11] [12]. The approach defined

by Cengarle et al. aims to define a semantic for UML class

diagram, UML interactions diagram and OCL. Each diagram

is described in its natural semantic because of the use of

the algebraic formalization of each formalism. In addition,

relations between diagrams are expressed via institution

morphism and comorphism. We note here that this approach

is inspired by Mossakowski works in the heterogeneous

institution setting.

The third category of works uses this theory for a specific

intention and a precise case study. The work in [1] is

a good candidate in this category where authors defined

a heterogeneous framework of services oriented system,

using institution theory. Authors (in [1]) aims to define

a heterogeneous specification approach for service-oriented

architecture (SOA). The developed framework consists of

a several individual services specification written in a local

logic. The specification of their interactions is written in

a global logic. The two defined logics are described via

institution theory and an institution comorphism is used to

link the two defined institution. This approach is inspired by

the work of Mossakowski. Another work is developed in [6]

where the authors propose to use institution to represent the

logics underling OWL and Z. Then, they propose a formal

semantic for the transformation of OWL to Z specification

via the use of institution comorphism.

Our proposed approach aims at first to give a semantic

for UML AD via its representation as an institution. As a

result, we propose to consolidate our approach given [8].

Thus, with the defined semantic the transformation of UML

AD model to an Event-B model can be semantically proven

which means that the two model will be semantically

equivalent. It’s clear that the approach we propose do

not tackle the problematic of heterogeneous specification

environment like [13] and in [9]. The use of Event-B is

argued with the following reasons:

• Event-B is a formal method that supports interactive

and automatic theorem proving. The resulted specifi-

cation, after the transformation process, can be proved

automatically. Event-B as a theorem prover is seeing a

continuous improvement by industrial society.

• With the notion of refinement, we can to perform

successive refinements to the Event-B model in order

to obtain a pseudo code written in declarative language.

• Thanks to the notion of composition supported in

Event-B, we can define heterogeneous specification

environment with different graphical formalism. With

the notion of composition, system described with het-

erogeneous specification can be composed and then

proved formally.

Our work is inspired form [9]. We are devoted to use

UML AD as a formalism for applications modeling. This

formalism will be represented as an institution. We intend

to gain a formal semantic of UML AD thanks to its algebraic

categorical presentation.

The version of UML AD used in this paper is 2.0. In

literature, many approaches are proposed for the develop-

ment of UML AD formal semantic. Recent works which

treated the newest version are the work of Störrle in [16] [15]

[17]. Störrle provides a formal definitions for the semantics

of control-flow, procedure call, data-flow, and exceptions in

UML 2.0 Activities. The defined semantic is inspired by

Petri-net semantic. The choice of petri-net semantic by the

authors is argued by the following reasons.

• The standard claims that in the version 2.0 of UML AD

Activities are redesigned to use a Petri-like semantics

instead of state machines.

• Thanks to the formal foundation adequateness of Petri-

net to give a formal semantic for UML AD

• In addition, in [15] Störrle have shown how standard

Petri-net tools may be applied to verify properties of

UML 2.0 activity diagrams, using a Petri-net semantics.

In our paper, we will not use any intermediate semantic

for UML AD such using Petri-net semantics. We provide a

formal semantic of UML AD with mathematical notions in

term of categorical abstract presentation. We get profit from

this categorical presentation the next benefit:

• From this categorical presentation of the syntax and the

semantic of UML AD, we can to prove that UML AD

can be written as an institution

• we can to use the defined institution for an heteroge-

neous specification tools like [13]

• Because we use Event-B as formal method for the

verification of the UML AD we can to use the concepts

of institution comorphism and institution morphism to

transform UML AD to Event-B

III. LOGIC AS AN INSTITUTION

Institution is an abstract concept invented by Joseph Goguen

and Rod Brustall because of the important variety of logics.

It provide a basis for reasoning about software specifications

independent of the choice of the underlying logical system

[7].

It offers an abstract theoretic presentation of logic in

a mathematical way. An institution consists of notions of

signatures, models, sentences, with a technical requirement,

called the ’Satisfaction Condition’, which can be para-

phrased as the statement that ’truth is invariant under change

of notation’ [14]. Modeling the signatures of a logical system

as a category, we get the possibility to translate sentences

200

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

Σ

Σ

Σ ΣI

and models across signature morphisms. The Satisfaction

Condition is essential for reuse of specifications: it states

that all properties that are true of a specification remain true

in the context of another specification which imports that

specification.

Definition 1:

An institution I = (SigI , SenI , ModI , |=I) con-
sists of:

• A category SigI whose objects are called sig-

natures and the arrow are signature morphism.

• A functor SenI : SigI → Set, this functor map

each signature Σ to the set whose elements are

called sentences constructed over that signa-

ture. Also Sen map each signature morphism

to function between sentences.

• A functor ModI : (SigI)op → Cat, this func-

tor map each signature Σ to the category of

models of this signature. Also Mod map each

signature morphism to model homomorphism

between models.

administrators and so on. Some works in the literature use

to define an institution for UML diagrams, we mention

[13] [10] [11] [12]. The cited works is devoted to define

three institution for respectively UML Class diagram, UML

Interactions Diagram and OCL. In our paper, the semantic

of UML AD will be based on the works of H. Störrle. As we

say in the previous section, the considered work is the more

recent and relevant work in this context conformed with the

standard.

With the version 2.0 of UML AD, the meta-model for

Activities has been redesigned from scratch (fig 1). The

main concept underlying Activity Diagrams is now called

Activity [17]. The meta-model defines six levels increasing

expressiveness. The first level (Basic Activities) already

includes control flow and procedurally calling of subordinate

Activities by Activity Nodes that are in fact Actions (see fig

1). This paper is restricted to Basic Activities. Readers may

refer to [15] [16] [17] for more details about the syntax and

the semantic of UML AD.

Next, we will prove that UML AD formalism can be

written as an institution.

B. The syntax of UML AD

• A relation |=I

giving for each sentences of a

signature Σ the models in which the sentences

are true.

The relation |=I
 is called the satisfaction condition which

can be interpreted like follows:

Given a signature morphism ϕ :Σ −→ Σ’ in the institution
I.

For each model M t ∈| Mod(Σt) | and e ∈ Sen(Σ)

ModI (ϕ)(M t) |=I
 e ⇒ M t |=I

 SenI (ϕ)(e)

IV. USING INSTITUTION FOR THE DESCRIPTION OF UML

AD FORMALISM

A. Graphical Formalism

UML activity diagrams (UML AD) are graphical notation

developed by the OMG. It’s used for the specification of

workflow applications and to give details for an operation

in software development. UML AD serve many purposes,

during many phases of the software life cycle [15]. They

are intended for being used for describing all process-like

structures, (business processes), software processes, use case

behaviors, web services, and algorithmic structures of pro-

grams. UML AD are thus applicable throughout the whole

software life cycle, which means during business modeling,

acquisition, analysis, design, testing, and operation, and

in fact in many other activities. Thus, they are intended

for usage not just by Software-Architects and Software-

Engineers, but also by domain specialists, programmers,

Figure 1. A portion of the meta model of UML AD (as it is defined in
the standard).

Activity as defined in [16] is the coordination of elemen-

tary actions or it consists of one atomic action. Besides,

given a class diagram, methods are functions that uses at-

tributes of the considered class. Then, class diagram methods

are functions or operations that changes the state of an object

(defined as an instance of the considered class). In this two

201

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

∈

∈

cases, we consider an activity as a method of a class in UML

class diagram or we consider an activity as a coordination

of one action or more. As result, we can define a relation

of hierarchy. This relation is defined between two activities

Activity A and Activity B.

An activity hierarchy A written as A = (A, =;A) is a partial

order with a set of activity names A and a subclass relation

=;A⊆ A × A.

Given an activity hierarchy A = (A, =;A), a A-activity
domain is a A-indexed family N = (Na)a∈A of sets of
activity with Na ⊆ Na’ if a =;A a’. We aim to prove

that the Activity hierarchies can be formalized as a category

which can be done via it’s formalization as a Grothendieck

construction and also as a monad. The two presentations of

Activity hierarchies as Grothendieck construction and as a

monad are shown in [12] (with replacing class hierarchies

with Activity hierarchies).

An UML AD signature consists of a pair Σ = (A, E)

where A is the activity hierarchy and E is the set of Activity

Edges.

Given a signature Σ = (A, E) with A = (A, =;A), we define

a set T of atomic formulas over Σ by:

T :=skip | seq(C,e,D)with e ∈ E and C, D ∈ A,

Given UML AD signatures Σ1 = (A1, E1) and Σ2 = (A2,

E2).

We define a UML AD signature morphism ϕ : Σ1 −→ Σ2

as a morphism that maps Activity node names to Activity

node names and maps Activity Edges to Activity Edges.

We note here that Activity node can be one of the following

node:

• EN: The set of Executable Nodes (i.e. elementary

Actions);

• IN or FN : The Initial Nodes or the Final Nodes

• BN: the set of branch nodes, including both Merge
Nodes and Decision Nodes

• CN: the set of concurrency nodes, subsuming Fork

Nodes and Join Nodes;

• ON: the set of Object Nodes;

As for Activity Edges may be a pair AE, OF , where:

• AE: the set of plain Activity Edges between Executable

Nodes and Control Nodes;

• OF: the set of Object Flows between Executable Nodes

and Control Nodes on the one hand, and Object Nodes

on the other.

Signature morphism extend to atomic formulas over Σ1 as

follows:

ϕ(skip) = skip

ϕ(seq(C1,e1,D1)=seq(ϕ(C1),ϕ(e1),ϕ(D1))

Let Σ = (A, E) be an UML AD signature. X =(Xa)a A.

The language of propositional (Σ,X) formulas has the below

form:

T :=skip | seq(C,e,D).
The language of first order (Σ,X) formulas has the form:
φ::=T | T=T | ¬φ | φ ∧ φ | φ ∨ φ | φ =⇒ φ | φ ⇔ φ |
(∃x)φ | (∀x)φ.

Σ sentences are closed formulas defined on (Σ,X) formulas.

C. The semantic of UML AD

In the standard, the semantic of UML AD is determined

by a path expressing the trace of the execution. For the

execution, a token will move from the Initial Activity Node

To the Final Activity Node [15]. Each Activity has its role

in AD execution [17]. First of all, a token in the Initial Node

means the beginning of the execution of UML AD. Then, the

trace of the token will be defined by the outgoing edges of

the Initial node. When a token arrive to an Executable Node,

it will trigger the Action or the operation in this node. For

the Join Node, if there is a token offered on all incoming

edges, then a token are offered on the outgoing edge. A Fork

Node means that, when an offered token is accepted on all

the outgoing edges, duplicates of the token are made and

one copy traverses each edge. In the case of Merge Node

and Decision Node, every edge (s) respectively incoming

and outgoing is associated to a condition determining the

condition of the activation of this edge. For Merge Node, if

there is a token offered to only one of the incoming edges

where the condition is true (it’s a sufficient condition), then

a token are offered on the outgoing edge of the Merge Node.

A Decision Node means that in the outgoing edge where the

condition is true, an offered token will traverses this edge. A

token that traverses a Object Node means the availability of

the object (variable) needed to the execution of the coming

activity.

Given a UML signature Σ = (A, E) with A = (A, =;A), a

structure I for Σ is a triple I=(N, E, µ) where N=(Na)a A is

an Activity domain for A, E a domain of edges and µ : E −→
E is an interpretation function for edges. Given a variable

C a valuation β for C in I assigns values to variables. This

means:

β : C −→ Na

A sub-signature Σt = (At, Et) ⊆ Σ with At = (At, =;AI)
induces a set of traces T(Σt,I) defined as follows:

T(Σt,I)={e1.e2..en | i ∈ {1, ..., n}, ei =

seq(Ci, ei, Di), Ci, Di ∈ Atandei ∈ Et}
The set of T(I)of all traces is defined as :

T(I)={e1.e2..en | i ∈ {1, ..., n}, ei =

seq(Ci, ei, Di)andCi, Di, ei ∈ I}

The set Θ(T, β) of traces of an atomic formula T over

Σ in the structure I under the valuation β are inductively

defined as follows:

T:=skip =⇒ Θ(T, β)={ε}
T:=seq(C,e,D) =⇒ Θ(T, β) = {seq(β(C), µ(e), β(D))}

202

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

T :=skip | seq(C,e,D) with e ∈ E and C, D ∈ A,

D. The satisfaction condition under the UML AD institution

Let Σ1 = (A1, E1) and Σ2 = (A2, E2) be two

UML AD signatures, an UML AD signature morphism

ϕ : Σ1 −→ Σ2, two structure I1 a Σ1-structure and
I2 a Σ2-structure defined as I1 = (N1, E1, µ1) and

I2 = (N2, E2, µ2). Semantic invariance under the change

of notation is formulated as ΘI2
(ϕ(T1), β2) = ΘI1

(T1, β1)

for any atomic formula T1 over Σ1. This can be shown by
induction on the structure of T1.

ΘI2
(ϕ(skip), β2) = {ε} = ΘI1

(ϕ(skip), β1)

ΘI2
(ϕ(seq(C, e, D)), β2) =

ΘI2
(seq(ϕ(C), µ(e), ϕ(D))(skip), β2) =

{seq(β2(ϕ(C)), β2(µ(e)), β2(ϕ(D))} =

{seq(β1(C), β1(e), β1(D)} = ΘI1
(T1, β1)

Also we have T(ϕ(Σ1), I2) = T(Σ1, I1)

E. The institution of UML AD

After this theoretic study of UML AD, we can to prove

that it form an institution. We can immediately observe that

institutional presentation rely heavily on the institution of

First Order Logic.

Proposition 1:

UML Activity Diagram form an Institution pre-

sented as below:

• Signatures declares Activity Nodes names,

Edges Nodes names.

• Sentences are closed formulas where well

formed formulas combines atomic formulas

using the conjunction, negation, universal

quantification and equality of variables. The

atomic formulas associated to UML AD are

UML AD branch (connection between Activity

Node names) and it’s composition using the

operator seq.

• Model interprets each signature as follows:

– Each activity node (depending to Activity

Node type) as:

· An instance of Executable Nodes if it
denote the set EN.

· A truth valuation if it is Initial Nodes or
the Final Nodes.

· A valuation to true or false depending to
the condition on the branch nodes (in-

cluding both Merge Nodes and Decision

Nodes).

· A valuation to true when it denote a con-
currency nodes, subsuming Fork Nodes

and Join Nodes.

· An instance of object or an attributes on
a Object for Object Nodes.

– As for Activity Edges the interpretation:

· An instance showing the end of execution
of the Activity Node (where this edge is

defined as the outgoing connection) and

the beginning of the execution of another

Activity (where this edge is defined as the

incoming connection).

V. EXEMPLE OF UML AD MODEL

Figure 2. An example of UML AD model([16])

The example of the figure 2 is presented in ([16]). It

represent an UML AD model and UML class diagram.

The later contain the different action(method) used in the

UML AD model. From the categorical theoretic presentation

of UML AD in the previous subsection, we can identify

the signatures, the sentences and the interpretation of the

example 2.

For the example (fig 2) the signatures declares Activity

Node names Initial Node, receive order, fill order, ship

goods, send invoice receive payment, close payment, Final

node, And Split, Or Split, And Join and Or Join. And split

denote a subsuming Fork. Or Split denote a Decision Node.

And Join denote a Join Nodes. Or Join denote a Decision

Node. As for edges, the example declares e1, e2 e3, e4, e5,

e6, e7, e8, e9, e10, e11, e12, e13. The sentence presented

by the above example is the following closed formulas:
seq(Initial Node,e1,receive order) ∧ seq(receive

order,e2,Or Split) ∧

203

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.30 e-ISSN: 2251-7545

seq(Or Split,e3,Or Join) ∧ seq(Or Split,e4,fill order) ∧
seq(fill order,e5,And Split) ∧ seq(And Split,e6,ship

goods) ∧
seq(And Split,e7,send invoice) ∧ seq(ship goods,e8,And

Join) ∧

seq(send invoice,e9,receive payment) ∧ seq(receive

payment,e10,And Join)∧
seq(And Join,e11,Or Join)∧ seq(Or Join,e12,close

payment) ∧
seq(close payment,e13,Final node).

VI. CONCLUSIONS

In our paper, we investigated the use of institution theory

in a modeling formalism. We are motivated by the fact that

we want to borrow the verification of system requirement

and UML AD properties to Event-B. In other terms, we

aim to verify properties inexpressible in UML AD model

with the theorem prover Event-B. The institution of UML

AD work as a meta-modelling language for this formalism.

In addition, UML AD model conformance with the meta-

model (formalism) will be seen as a verification of the

syntax correctness in the framework of UML AD institution.

The defined syntax for UML AD don’t address the whole

syntax such it’s defined in the standard. As future work,

we aim to add more aspects for the UML AD institution.

Then, We intend to prove an institution of Event-B and an

institution comorphism from UML AD institution to Event-

B institution. Thus, the semantic equivalence between source

and target model will full preserved.

REFERENCES

[1] A. Knapp, G. M. Marczynski and A. Zawlocki, A heteroge-
neous approach to service-oriented systems specification. In
SAC, pages 2477–2484, 2010.

[2] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski,

F. Rabe and K. Sojakova, Towards logical frameworks in the
heterogeneous tool set hets. In WADT, pages 139–159, 2010.

[3] A. Boronat, A. Knapp, J. Meseguer and M. Wirsing, What Is

a Multi-modeling Language?. In WADT, pages 71–87, 2008.

[4] R. Diaconescu, Grothendieck institutions. Applied Categorical
Structures, 10, 2002.

[5] R. Diaconescu and K. Futatsugi, Logical foundations of

cafeobj. Theoretical Computer Science, 285:289–318, 2002.

[6] D. Lucanu, Institution morphisms for relating owl and z. In
The 17th International Conference on Software Engineering
and Knowledge Engineering, 2005.

[7] J. Goguen and G. Rosu, Institution morphisms. Formal Aspects

Computing, 13(3-5):274–307, 2002.

[8] L. J.Ben Ayed, A. Ben younes and A. Achouri, : Using atom3
for the verification of workflow applications. In ICSOFT (2),
pages 32–39, 2010.

[9] T. Mossakowski, Heterogeneous Specification and the Het-
erogeneous Tool Set. Habilitation thesis, Universitaet Bremen,
2005.

[10] M. V.Cengarle, Uml 2.0 interactions: Semantics and re-

finement. Technical report, Institut fr Informatik, Technische
Universitt Mnchen, 2004.

[11] M. V.Cengarle and A. Knapp, An institution for uml 2.0

interactions. Technical report, Institut fr Informatik, 2008.

[12] M. V.Cengarle and A. Knapp, An institution for uml 2.0 static
structures. Technical report, Institut fr Informatik, 2008.

[13] M. V.Cengarle, A. Knapp and M. Wirsing, A heterogeneous

approach to UML semantics. In Concurrency, Graphs and
Models, pages 383–402, 2008.

[14] R. Diaconescu, Institution-independent Model Theory.

Birkhuser Basel, 1st edition, 2008.

[15] H. Störrle, Structured nodes in UML 2.0 activities. Nordic J.
of Computing, 11(3):279–302, 2004.

[16] H. Störrle, Semantics and verification of data flow in uml

2.0 activities. Electronic Notes Theoretic Computer Science,
127(4):35–52, 2005.

[17] H. Störrle, J. H.Hausmann and U. Paderborn, Towards a

formal semantics of uml 2.0 activities. In In Proceedings
German Software Engineering Conference, volume P-64 of
LNI, pages 117–128, 2005.

204

