
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

212

An Ameliorated Methodology to Establish Compatibility between Structural

Parts of Object Oriented Technology and Network DBMS.

Siddappa G Makanur
Dept. of Information Science &

Engineering

STJ Institute of Technology,

Ranebennur, India

sgmakanur@hotmail.com

Dr. Shivanand M. Handigund
Dept. of Computer Science &

Engineering

Bangalore Institute of Technology,

Bangalore, India

smhandigund@gmail.com

Dr. M. Sreenivasa Rao
School of Information Technology,

JN Technological University,

Hyderabad, India

srmeda@gmail.com

Abstract-- Object Oriented (OO) concept is widely accepted for

software development by the software development community

for its naturalness and mathematical rigor. Object Oriented

Analysis & Design (OOAD) is supported by Unified Modeling

Language (UML). Though, OO Technology (OOT) is

developed with the state of the art technology, it is passive i.e. it

can not be implemented for the development of software

projects on its own. On the other hand the Network Database

Management System (NDBMS) is active for the

implementation of the information system, but suffers from

lack of au-courant technology. Both are having

complementing characteristics of each other. This paper

identifies these complementing virtues and lacunae of both the

paradigms and super imposes one over the other. The super

imposed paradigm nullifies lacunae of one with the virtues of

the other and vice versa. This superimposition is used to

develop a robust object network database management system.

This act necessitates establishment of compatibility amongst

model elements of OOT and NDBMS. In this paper, we have

developed an ameliorated methodology that brings

compatibility between these two paradigms. This transforms

the OOT paradigm from passive to active at the same time it

provides NDBMS with state of the art coating without

enhancing its complexity. We have mapped model elements viz.

Class to Record Types, inter relationships such as Association,

Composition and Aggregation to Set Types, inheritance of

superclass and subclasses to record type, at present this is

achieved at the cost of introducing a constraint that subclasses

are non overlapping.

KEYWORDS: Modeling elements, UML, OOAD, OOT,

CODASYL, NDBMS, Bachman diagram, ORDBMS,

OODBMS, Multiple Inheritance.

I. INTRODUCTION

Motivation: There exists many DBMSs like Hierarchical

DBMS, Network DBMS, RDBMS, ORDBMS and

OODBMS. But no DBMS ossifies all types of information

systems. Each one may well suits some applications and ill-

suits for other applications. This is because each DBMS

compromises with some of the features for ease. Researchers

expected that ORDBMS would be the ultimate.

Unfortunately it has its own lacunae in implementing

nonconventional interrelationships like aggregation,

generalization/specialization and multiple inheritance

through the required hierarchical path etc. Moreover, the

information system is realized through the DBMS with

heterogeneous group of people with different cultural and

language background. In such heterogeneous group there

exists the possible use of synonymous and heteronymous

words. There is no provision to resolve these

synonyms/heteronyms issues present in DBMSs except

Network DBMS. No DBMSs could realize effectively the

multiple inheritance features. The different associations are

realized in DBMS with OIDs (object identity) like Database

Keys (DBK). On the other hand though the object oriented

technology is the state of the art technology, it has precluded

the implementation of good database design & good

software engineering principles where as even in classical

data processing systems these principles realized. There is an

urgent need to blend these good principles into OOT

components and then use them to refine NDBMS features.

Vision: To incorporate the au-courant OO Technology

facilities into the Network database Management System.

Mission: To identify & attune the Object Oriented

Technology features to blend into NDBMS without

compromising the vigour.

Objectives:

1. To identify the structural model elements of OOT to

be amenable for NDBMS model elements.

2. To establish the compatibility between OOT model

elements and NDBMS implementation elements.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

213

Object Oriented Technology is the state of the art

technology, imbibed with naturalness and sound

mathematical rigor. OOT is immortal to the extent of

naturalness i.e. any thing developed on OOT will not be

legacy in near future. Thus the NDBMS blended with OOT

features will be robust and will not be legacy in near future.

However, it is passive in nature which can not be realized

independently. On the other side most of the characteristics

of NDBMS are either compatible or achievable compatibility

with the characteristics of OOT [8], therefore blending the

two paradigms is quite justifiable.

The good database design principles are realized even in

classical paradigms, but are not incorporated in OOT. This is

reduction-ad-absurdum to be called as state of the art

technology. Therefore blending of the virtues of good

database design principles & good software engineering

principles is need of the hour. Moreover passiveness of

OOT is to be transformed into activeness.

On the other side the NDBMS is developed by CODASYL

(COnference on DAta SYstems Languages), so the metonym

is CODASYL DBMS. It has OOT compatible features like

the Set Type (multiple inheritance), Hierarchical

representation of attributes (superclass/subclass), Realm

(Class/Use case package diagram), Location modes

(file/memory organization), Navigation (access strategies),

Insertion/Retention modes (constraints), authorization

(access constraints) through Schema and Subschema

definition & Privacy Locks, use of Alias clause (synonyms

/metonym), User Work Area (program variables

corresponding to database object classes), System Owned

Set (database entry points) [3,7,13,14,15]. Thus it was

developed as a highly active DBMS, unfortunately the

navigation of the record occurrences through their

hierarchical root node made it difficult to use with its high

complexity.

NDBMS does not support data oriented process and the

interrelationships among the record types are realized using

set types, and between the record occurrences by the set

occurrences. The order of record occurrences are stored

through the DBK not trough the primary key and the foreign

key. Though, the interrelationship is limited to an

association, the naming of set types helps in incorporating

composition/shared aggregation and

generalization/specialization. Thus NDBMS is more suitable

to realize OO features [8, 14, 15].

The only hitch in NDBMS is its complexity which can not be

reduced in the ensuing ONDBMS and therefore the

complexity wimp can be implicitly achieved through

incorporating more facilities for the complexity (buy one get

two). Reducing the complexity of NDBMS is a herculean

task however we attempt to provide more facilities and

sophistication so that the rate of complexity per facility or

sophistication is drastically reduced.

The NDBMS has powerful implementation techniques but

with complex schema and subschema definitions

(uncomfortable bogies). The OOT has luxurious state of the

art development model (comfortable bogies) but without

implementation engine. Thus OOT and NDBMS

complements each other (made for each other) to design and

develop information systems, and this NDBMS is the

powerful engine to drag the comforts of OOT.

In our intended work, we have mapped (establishment of

compatibility) the model elements (structural) viz. Class to

Record Type, interrelationships such as Association,

Composite or shared Aggregation to Set Types with proper

constraints such as retention/insertion criteria and mode,

inheritance of superclass and non overlapping subclasses to

Record Type with redefines clause. The private and public

visibility is mapped to Privacy Locks [6]. The NDBMS has

the facility to introduce user specific synonyms and

heteronyms without conscious knowledge of the generic

name stored in the schema [6, 13].

II. PROPOSED WORK

A. Mapping OO features to compatible features of

NDBMS

In our intended work we consider the abstraction of subset of

the model elements responsible for representing the

structural part of the object. Further, these abstracted model

elements are mapped to NDBMS acceptable features of the

model elements. This mapping eases the process of

implementing the corresponding OO features in an object

network approach.

B. Mapping Class to Record Type

The concept of the class is based on the entity definition, and

the record type in NDBMS also represents the entity. Object

structure is similar to normalized entity structure [1]. The

Class name is mapped directly to the Record Type name.

The attribute of the class is mapped to data item of the record

type. Since the record type is already designed using good

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

214

database design principles (normalized), while mapping class

to record type, care should be taken to refine the class using

good database design principles [1] so as to smoothen the

mapping from class structure to a record structure. The

attributes of record type need not be in the same level. These

hierarchical level attributes may be used to represent the

composite attributes in the class structure. Using usage

clause the appropriate attribute are mapped efficiently (saves

space). While defining the record type, its storage location

modes (makes access criteria) are also specified for the

speedy retrieval from the database.

Ex: struct USNType{

 short Region;

 char College[2];

 short Year;

 char Branch[2];

 short Sn;

 }

Class STUDENT {USN USNType;

 NAME String;

 Subj[8] String;}

Class is mapped to Record Type as below

C. Mapping Association to Set Type.

Association is the navigability or reachability between the

related object classes. In NDBMS, the association is

represented by set type. Navigation is made through these

sets occurrences. An association is implemented directly as

set type (one : many) in which class on one side is

represented as the owner and class on many side is

represented as member of the set type. No need of any

pseudo attribute or method to represent an association [19]

unlike in conventional relational models. The degree of

participation is defined using retention clause in the set type

definition. Association properties such as order can also be

defined using order clause in set type definition. The set

modes are defined to provide easy traversal to members.

Association with cardinality m: n is implemented using two

set types, in one set owner is record type at m side and in the

other set owner is record type at n side. The relationship

record containing primary keys of both the owner record

types (can be dummy, need not contain any data) is member

in both the set types and acts as a junction record.

D. Mapping Composition (whole-part relation) to set type

The composition is a tighter form of association, represented

by a set type in which whole class is represented by owner

record type and part class is represented by member record

type, with retention mode as mandatory (fig1). So that part

object can not exist in isolation from the whole and belongs

to only one assembly and when whole is deleted, its parts are

also deleted (same life time). Thus the semantics of

composition is enforced directly. To facilitate better access,

the location mode of part record type is defined as via set

type. Thus composition is directly implemented as shown in

the fig1.

Fig1: Composition

The implementation schema definition for the composition

(fig1) in CODASYL is as follows

RECORD NAME IS WHOLE

LOCATION MODE CALC USING WId

 DUPLICATES NOT ALLOWED FOR WId

WITHIN C-Area

RECORD NAME IS STUDENT.

LOCATION MODE CALC USING USNType.

01 STUDENT

 02 USNType.

 03 Region PIC 99.

 03 College PIC AA.

 03 Yr PIC 99.

 03 Branch PIC AA.

 03 Sn PIC 999.

 02 Name PIC X(25).

 02 Subj PIC X(20) OCCURS 8 TIMES

0
02 Subj PIC 15(X) OCCURS 8 TIMES

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

215

03 WId PIC 9(5)

03 WName PIC X(20)

RECORD NAME IS PART

LOCATION MODE IS VIA WPset

WITHIN AREA C-Area

03 PId PIC 9(5)

03 PName PIC X(20)

SET NAME WPset

ORDER NEXT

OWNER WHOLE MEMBER PART

MODE PONTER ARRAY

MANDATORY AUTOMATIC

SET SELECTION IS THRU LOCATION MODE OF

OWNER //reach the set through its owner, as PART is weak

entity

When we read a composite object, it is essential that its parts

would be read along. In DML(Data Manipulation Language)

we can read all the PARTs at a time i.e. read all the DB Keys

of the members in the set occurrence (Ex: WPset). To

facilitate this, the mode of the set type should be POINTER

ARRAY, then using ACQUIRE(20, List1, SET=’WPset’)

verb all the DBKs of parts are accessed. This facilitates the

semantics of a composite object when it is loaded into the

host program (persistent closure is maintained).

E. Mapping Aggregation to Set Type

The aggregation is a form of association called has-a type of

relation similar to composition but part is an independent

object and can be shared by many assemblies (other

aggregate object). This is an instance of many: many

association and represented by two set types (1:m and 1:n)

with the junction containing the primary keys of both record

types or dummy record type as member in both the set types.

One set type owned by an aggregate record type and other

set type owned by part record type (fig2). Here the mode of

both the set types should be ARRAYPOINTER so that the

programmer can read all the parts of an aggregate object at

once, and the semantics of aggregation can be maintained

easily.

Fig2: Aggregation

F. Mapping Generalization/specialization.

In the database the objects which are the instances of the

class are stored. The instance of a class in the inheritance tree

contains the attributes which are the union of attributes of all

its superclasses with its own attributes. Thus it is appropriate

to merge the classes in the in the single inheritance tree. But

the subclasses at the same level are mutually exclusive and

hence the instance contains the attributes of any one

subclass, attributes of other classes are not applicable, this

leads to the wastage of space. This wastage is eliminated by

allocating the same space for the attributes of all subclass in

the same level. This is accomplished by the use of Redefines

clause available in DDL (Data Definition Language) of

CODASYL model.

The inheritance tree is represented by single record type by

grouping the attributes in the hierarchical object classes from

root node to leaf nodes in higher level numbers (lower

levels) in schema and subschema definitions. We represent

the disjoint portion of subclasses at the same level in the

hierarchical tree through the use of Redefines clause at the

same level. The overlapping attributes of the subclasses can

be represented by the same level on par with redefines clause

immediately prior to redefines clause. This serves the

purpose of representing superclass subclass hierarchy but at

the cost of increase in memory space. Moreover the classes

at the same level need to be represented with the same level

number, this optimizes the use of memory location, but the

subclasses of the same level can not be concurrently

processed (fig3). This technique is superior to single table

mapping technique in object-relational mapping, where the

inapplicable attributes values are padded with null[18].

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

216

 Fig3: Inheritance (disjoint subclasses)

In case of single inheritance tree, the private visibility is not

useful as it contradicts the very purpose of superclass and

subclass hierarchy. All the classes in the specific single

inheritance tree are merged to root class, and the names of

these classes becomes synonyms. This synonyms can be

implemented using alias clause in the subschema definition.

G. Mapping Multiple inheritance:

In this case, we use the above said merging of classes to

single class that is transformed & represented in a schema as

a single record type with hierarchical level numbers for the

single inheritance. For multiple inheritance part, we use the

owner member relationship (set type) between super and

subclasses, thus each super class is connected with the set

type(fig4).

Fig4: Multiple Inheritances.

The multiply inherited record type is a member in every

inherited path from each owner. Here, using the virtual

clause the member record type has to share the required

attributes through the each inheritance set type in which it is

a member (i.e. it shares the attributes from the two set types

SP and EP as shown in fig4).A typical member record

definition is shown below.

RECORD TYPE IS PartTechStaff

02 Skill PIC X(25)

02 StName IS VIRTUAL AND SOURCE IS StName OF

OWNER OF SP

02 StEmpID IS VIRTUAL AND SOURCE IS EmpID OF

OWNER OF EP

Thus the programmer can share the required attributes

from each owner (represented by the superclass) through

the corresponding set type.

G. Mapping Diamond inheritance

This is similar to the above, but the classification is

overlapping and redefines clause is not used for the single

inheritance portion of the class hierarchy(fig5).

Fig5: Diamond Inheritance.

According to the representation of single inheritance,

subclasses are merged with their superclass with redefines

clause used for the attributes of the subclasses at the same

level. But in diamond inheritance subclases are not mutually

exclusive and hence memory for all attributes of all the

subclasses along with base class attributes is required

therefore Redefines clause should not be used. In fig5 the

class ENGRMGR can avail any attributes of its superclasses

after merging through EEME set type.

H. Visibility

Every host program is attached to a specific subschema. The

record types and set types, which are constituent of

subschema are only visible to the host program. Apart from

this we can restrict the visibility at record level, attribute

level, area level and set type level by using PRIVACY

LOCKs defined in the subschema. While importing the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

217

record type definition from schema in subschema, the

PRIVACY LOCKs can be defined, viz. COPY

recordtypeName RECORD PRIVACY LOCK FOR {DML

Verb} IS {YES|NO}. And while importing set type

definition like COPY setName SET PRIVACY LOCK FOR

[set operation] IS {YES|NO}. Thus the private visibility is

implemented using privacy locks.

Thus visibility of the record type is same as the visibility of

an object class. The public visibility of record type is

incorporated by the presence of required portion of record

type description as part of the subschema and private with

privacy locks. We have adopted this approach on the pretext

of the utility of the attributes of the record type is restricted

to adjacent (connect via an association or set type) record

types through parameter passing.

III. RELATED WORK

A. Relational approaches for the storage of objects.

For the storage of objects, programmers are using RDBMS

engines to implement information systems. Several Object

Relational Mapping techniques and tools are being used by

programmers’ community, who spend 25% of their effort in

managing their object to relational mappings and vice versa

[5, 6, 10, 18] because of the semiotic difference between

object modeling techniques and relational data modeling

techniques.

In mapping classes to relations, when the class hierarchy is

mapped to single relation. This mapping will produce nulls

for the attributes that do not apply to the corresponding

subclass[16, 18]. In our approach we have used the redefines

clause in the single record definition to eliminate nulls. In

ORDBMS each relation need an additional attribute to hold

the tuple’s unique identifier as OID (object identity)[16]. In

our approach a database key acts as an OID and does not

need any additional attribute

Thus the object oriented features are orthogonal to the

relational model features and is not suitable to store objects

[5]. Little analogy exists between the relational data model

and the object data model, blending the two systems could

not render the expected results [14, 15].

As per Atikinson et el, the CODASYL model supports

certain OODBMS features defined in his first OODBMS

manifesto[8] but has not discussed how it can support. An

Object Database Management Group standards recommends

that navigation should be supported by OODBMS [11] &

CODASYL supports it. Therefore we are realizing the OO

features into the compatible features of CODASYL DBMS

to facilitate easy implementation.

Now days organizations are using ORDBMS to store their

objects structure using Object-Relational Mapping[17, 18].

ORDBMS performs badly for single object operation or

navigation using joins, which are slower than pointer

traversal [2, 12]. The object oriented applications are not

data centric and has broader range of relationships than those

expressed in SQL [16].

B. Object Oriented Database Management System

(OODBMS):

There is no truly portable way of interacting with an object

oriented database exists and programmers are still managing

with object-relational mappings [9]. Incompatibility arises as

they uses different approaches to implement persistence[4].

The Object applications are not data centric like relational

model, but OID centric [16]. NDBMS is also not a data

centric no need of a foreign key and used DBKs to refer

record objects. OODBMS aims at seamless integration with

programming languages and NDBMS provides seamless

integration by defining language specific subschema[6].

Object Management Group recommendations such as

support for multi valued attribute, navigation, OID, language

specific binding are already available in NDBMS. Thus

enhancing the network data model is easier than developing

a new OODBMS.

The structural CODASYL model for object oriented

interrelationships was proposed by us in [14, 15]. This was

based on incorporation of additional interrelationships such

as aggregation, generalization/specialization as new kinds of

set types. This may work well for isolated structural

representation. This was wimp representation as there is a

need to incorporate other features in a single representation.

Here authors have tried to alter the CODASYL record

organization itself instead of using the compatible features.

IV. CONCLUSION

In our paper, we have presented the techniques to map object

class, various types of associations, generalization

specialization and composite aggregation into Record Type,

various types set types, along with their retention and

insertion criteria respectively. Also we have developed

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.32 e-ISSN: 2251-7545

218

mapping techniques to realize visibility through privacy

locks.

V. FUTURE WORK

We could not implement multiple inheritance in a clear cut

way as it may take multiple routes to the navigation of parent

classes. This we will take up as a challenge for our future

work. While incorporating public visibility and protected

visibility, there is a need of redundant records in every

subschema and use of virtual attributes respectively. How to

reduce this redundancy is yet be addressed.

REFERENCES

[1] Ajeet A C, Shivanand M H, “ A Mediocre Approach to

Syndicate the Attributes for a Class or Relation” , in

proceedings of International Journal of Software Engineering

and Its Applications, Vol. 5 No. 4, October, 2011.

[2] David Maier, Jacob Stein, Allen Otis, Alan Purdy.

“Development of an Object-Oriented DBMS”. OOPSLa’86

as ACM SIGPLAN 21, Nov 1986, 472-482.

[3] Elmasri and Navathe, “Database Systems” 2nd Edn,

Pearson Education Publisher, 1994

[4] ETH Zurich’s lecture “Object-Oriented Databases” by

Michael Grossniklaus and Moira C. Norrie.

http://www.globis.ethz.ch/education/oodb, Sept 2010.

[5] H. Darwen and C J Date, “The Third Manifesto”,

Technical Report,

http://www.acm.org/sigmod/record/issues/9503/manifesto.ps

, 1995.

[6] International Computers Ltd “IDMS Data

Administration Languages”, Reference., 1978.

[7] Jeffrey O Ullman, “Principles of Database Systems” 2nd

Edn, Galgotia, 1984.

[8] Malkolm Atkinson et al, “The Object Oriented Database

System Manifesto”, First International Conference on

Deductive and Object-Oriented Databases. Kyoto, Japan

1989.

[9] Michael C, “Next Generation Object Database

Standardization”, Object Database Technology Working

Group White Paper, Sept 2007.

[10] Neal Leavitt, “Whatever Happened to Object-Oriented

Databases?”, IEEE Spectrum, Aug 2000

[11] Object Management Group, “The Object Data Standard:

ODMG 3.0” , 1999. Morgan Kaufmann Publishers, San

Francisco, California.

[12] R. G. G. Cattell, T. R. Rogrss. Combining Object

Oriented and Relational Models of Data. 1986 International

Works shop on Object-Oriented Database Systems, Pacific

Grove, Calif, Sept 86.

[13] Robert W Tailor and Randall L F, “CODASYL

Database Management System” Computing Surveys, Vol 8,

No1, March 1976, ACM

[14] S. G. Makanur, Shivanand M. H. and Sreenivasa Rao,

“An Ameliorated CODASYL Model to Store Object

Structures” in proceedings of ICFoCS 2011, ISBN 978-81-

921929-0-1, Aug 2011, paper serial no 59

[15] S. G. Makanur, Shivanand M. H. and Sreenivasa Rao,

“Storage of Persistent Objects using Ameliorated

CODASYL Model”, inproceedings of IBM Centennial

Colloquium and IBM Collaborative Academic Research

Exchange (I-CARE) 2011, Oct 2011. Track III, Sl no: 06.

URL: www-

07.ibm.com/in/research/icare_2011_posters.htmlCached

[16] Thomas Connolly and Carolyn Begg, “Database

Systems”, IV Ed Peasrson. 2005

[17] W. Keller, “Persistence Options for Object Oriented

Programs” European Conference on OO Programming

Languages, Munich, 2004.

[18] Wolfgang Keller, “Mapping Objects to Tables A Pattern

Language”, Europian Pattern Languages of Programming

Conference, Irsee, Germany, 1997.

[19] Yann G et at, “Bridging the gap between modeling and

Programming language”, Technical Report, Object

Technology International, Inc. – 2670 Queens view Drive –

Ottawa, Ontario, K2B 8K1 – Canada, 2002.

http://www.globis.ethz.ch/education/oodb
http://webcache.googleusercontent.com/search?q=cache:gxJ_uSedLcwJ:www-07.ibm.com/in/research/icare_2011_posters.html+S+G+Makanur&cd=6&hl=en&ct=clnk&gl=in

