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      Abstract—Semantic musical features reflect in-depth 

understanding of the music, instead of the uninterpreted music 

content, and serve as idea choices for multimedia content 

annotations. The proposed semantic music features are based 

on human music interpretations and their computational 

implementations. When employed for multimedia applications, 

these features enable us to simulate human-music interactions. 

This musical relevance provides significant performance 

improvement over conventional score or audio based 

multimedia annotation systems. Two types of semantic musical 

features, including reductive music analysis and musical 

expressive features, are introduced. The details of their feature 

extraction algorithms and semantic interpretations are also 

illustrated.  

Keywords- knowledge engineering; multimedia annotation; 

feature analysis; human-computer interaction 

I.  INTRODUCTION 

The rich emotional and aesthetic elements in music exert 
important influence on our perception and understanding of 
multimedia content. Music-based “semantic” features, which 
are based on the human music understanding and 
interpretation, are especially suitable for multimedia content 
annotation applications. Because music and its attached 
media content are intrinsically entangled, the content labels 
based on the accompanying music can be directly applied as 
the semantic content labels: we simply compose or select the 
“right” accompanying music because it provides a sound 
description of the synchronized the media content. For 
example, background music in movies effectively set the 
mood and the pace for the visual aspects [1]. The tempo 
variations of the background music (a type of semantic 
music feature) thus serve as a semantic descriptor of this 
movie segment.  In this paper we introduce two types of 
semantic musical features including reductive music analysis 
and musical expressive features. We then introduce their 
interpretations and perceptual relevance when applied as data 
interfaces for multimedia applications.  

The term semantic musical features refer to interpretive 
musical features that reflect the understanding of musical 
“meaning”, instead of uninterpreted music score or audio. 
The proposed semantic musical features are defined as large-
span features to differentiate them from small-scale 
structures such as local harmony and voice-leading pattern. 
As these small-scale structures typically cover a short music 
segment (typically shorter than a music phrase, or 

approximately 8 bars), the two types of semantic music 
features we proposed provide multimedia annotation for 
music units larger or even span a whole music composition. 
In this paper we focused on the expectation-relaxation 
patterns derived from these two types of semantic music 
features. The proposed semantic music patterns serve as 
intelligent data interface for various multimedia applications 
such as semantic media web, electronic games, intelligent 
audio/video player, content-based multimedia information 
retrieval, automatic media production, and interactive media. 

Existing frameworks for multimedia content annotation 
are summarized in [2-6]. The content labels of these systems 
are based on two types of features. 1) The content features, 
which include the music-score-based features [2,3] or audio 
signal features [4,5], are the standard musical features for 
multimedia annotation. These features are convenient to 
extract and easy to apply, but their implementations are 
unsatisfactory because they reflect the uninterpreted music 
score or audio, rather than a plausible music understanding. 
2) Manually complied annotation scripts [6] can embed the 
music interpretation of the human producers and thus gives 
the end-user an impression that the computer program does 
understand the music. However, the manual analysis and 
programming burden renders this approach impractical for 
applications on large-scale multimedia database/network. 
The aim of this paper is to introduce “music meaning” based 
features into this application area to better simulate human-
based musical interactions to achieve higher music 
releavance. The two types of semantic music features we 
introduced are based on human music understanding and are 
thus cognitively more relevant compared to simple content 
features. They can also be automatically compiled at certain 
level to facilitate practical implementations.  

More detailed descriptions of reductive music analysis 
can be found in [7] for Schenkerian analysis and in [8] for 
Generative Theory of Tonal Music (GTTM).  Existing 
implementations of automatic Schenkerian analysis is 
summarized in [9]. The computational implementations of 
GTTM are summarized in [10,11]. In this paper we 
formalize and adapt these analytic results for multimedia 
annotation applications.  Specifically we use a multi-
dimension feature sequence to encode these reductive music 
analysis results. This data format encodes important pattern 
as feature labels that can be readily applied to multimedia 
application. Existing frameworks of musical expressive 
feature extraction is illustrated in [12-14]. In this paper we 
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focused on the feature extraction process of obtaining 
musical expressive feature from the performance audio. This 
audio-based feature extraction process is more convenient 
than the sensor-based approaches in [15] because music 
performance recordings are widely available.  

The concept and processing algorithms for these two 
types of semantic musical features is detailed in Sec. II and 
Sec. III. Sec. IV evaluates the cognitive relevance of these 
semantic music features. Sec. V provides a brief summary 
and illustrates future research topics.    

II. SEMANTIC MUSICAL FEATURES BASED ON 

REDUCTIVE MUSIC ANALYSIS 

A. What Is Reductive Music Analysis? 

The reductive musical analysis is an interpretative 
procedure in music theory that reveals the in-depth structure 
of a music score. A reductive musical analysis gives depth to 
a music score by decomposing the music surface into a 
hierarchical structure-elaboration representation. Several 
approaches have been developed for music theoretical 
reductive analysis, including Schenkerian analysis [7] and a 
generative theory of tonal music (GTTM) [8]. In reductive 
music analysis, music score is referred as music surface [7] 
because they act as the beginning part of an analysis and 
music theorists are expected to explore beyond this surface 
and find additional structures.  A reductive music analysis 
provide an additional depth dimension  by finding simplified 
music contents from the music surface of original music 
piece.  

An example of music reductive analysis is detailed in 
Fig. 1. This reductive process is a typical music theoretical 
analysis for tonal music compositions. This short analysis 
example is based on Schenkerian analysis [7,9] and serves as 
an illustrative example. The music score at the highest 
analysis layer (layer 1 as music surface, in Schenkerian term, 
foreground) is supposed to be generated from a simpler layer 
(middle ground) beneath it. Comparing layer 1 and layer 2 
we could observe in analysis path 1-1that the accented C in 
the first measure of layer 2 is extended (elaborated) to D, C, 
B, C in layer 1 by adding step-wise development (neighbor 
notes in the surface elaboration). The hierarchy created by 
the above reductive procedures represents the music 
understanding at different abstraction/resolution levels. 
Because each analysis layer is simpler than the previous 
layers, this analysis is termed “reductive”.  

The surface layer as in Fig. 1 is composed of sequential 
data from music score and represents a ‘flat’ topology with 
no specific priority of each music events. After applying the 
first round of reduction processing, the score events in the 
surface plane are sorted as core-structure and embellishment 
according to the rules as detailed in [7]. The score events 
whose roles are categorized as embellishment in the surface 
are reduced and the remaining part is passed to the second 
analysis layer. For this example here the second analysis 
layer is very significant in our listening experience, the 
simplest layer (layer 3) is not the most perceptually-silent 
layer but rather a goal for this reductive process. In this 

illustrative example we only deal with a few music phrases. 
For practical analysis the data score scale can expand a 
whole music work, as demonstrated in Henrich Shenker’s 
original work “Free Composition [16]”.  

 
 

Fig. 1. An example of reductive music analysis. The original music score is 
illustrated as music surface in layer 1. The music surface is modeled as 
generated from simpler levels beneath.   

B. Basic Analysis Methodologies 

Fig. 2 is an illustration of three typical reductive 
processes.  In each reductive process, the music event in top 
layer is sorted as structural events and elaboration events. At 
the lower (deeper) analysis layer the elaboration event is 
reduced and only the structurally salient music notes are 
kept. In Fig. 2.1(a) we introduce an arpeggiation. An 
arpeggiation is defined as a series of music notes skip 
between the constituent notes of chord in the same direction 
[7]. Here C5, E5 and G5 at the top layer belong to C major 
harmony. In the lower layers they are reduced to C5. This 
reduction process provide the following interpretations 
concerning this C5-E5-G5 sequence:  (1) E5 and G5 are 



                                The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.36                e-ISSN: 2251-7545 

 

242 

 

related to C5 by their decorating roles; (2) the music role of 
C5 is more prominent (structurally) than E5 and G5: C5 then 
further plays a different role in a larger scale while in 
reduction E5 and G5 are abstracted off so they do not play 
any further functionality in the deeper analysis levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 2.1(b) we introduce a neighbor note (Nebennote 

in German). A neighbor note is related to the music note it 
elaborates by step, and is usually dissonant with the 
supporting harmony [7]. In this example the note D5 is 
related by step to the structural note C5. In (c) we illustrate a 
linear progression (Zug). A linear progression means step-
wise motion in one direction between two harmony notes. 
The D5 fill in the blanks between C5 and E5. C5 and E5 are 
consonant notes of the supporting C major harmony and are 
treated as structurally significant.    

C. Semantic Interpretations 

The rationale behind using this reductive music analysis 
results as semantic music features is that this reductive 
structure reflects an understanding of music. The similarities 
in these analysis layers could be encoded in structural labels 
and matched to the analysis layers of another music piece so 
the cross-layer similarities could be identified. The GTTM 
further embeds a cognitive basis so the structural similarities 
are empirically linked to subjective listening experience.  

Fig. 2(d)-(f) further provides a “metrical wave” 
interpretation of the music meaning of the reductive steps. 
This interpretation process of a reductive music structure is a 

subjective process [16,17,18]. The same reductive music 
structure is open for multiple alternative interpretations so 
multiple reductive structures are possible. 

In the examples presented in Fig. 2(a)-(c) the reductive 
elements is first interpreted as structural significance levels. 
In this small scale example we could observe the wave shape 
demonstrating the structural significance level changing with 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time. In Fig. 2 (d)-(f) these examples are interpreted more 
intuitively as tension and relaxation patterns. In the 
arpeggiation example of Fig. 2 (a) and (d), the first music 
event C5 is important because (1) it is the first harmonic note 
of the note sequence of C major chord C5-E5-G5; (2) it is 
supported by C4. Since E5 and G5 are just a repetition of this 
harmony, they are less important in music structure.   

In Fig. 2 (d) the repetition of harmonic notes in a chord is 
interpreted as building tension. The listeners are wondering 
if there is changes of music chord or voice-leading directions 
following E5 and G5. The longer repetition leads to more 
intense expectations of the imaginary resolution. In Fig. 2 
(b)(e) the neighbor note is dissonant with the supporting 
harmony and thus treated as structurally less significant. 
Because in tonal music dissonant music event have a strong 
tendency towards return back to consonance, D5 here builds 
up musical tension. The tension is subsequently resolved by 
going back to consonant note at the second C5. In Fig. 
2(c)(f) the linear progression patterns follows a similar music 
pattern, where inharmonic note D5 is interpreted as music 

 

                                                  (a)                                                                (b)                                                             (c)        

     

                                                 (d)                                                                  (e)                                                               (f)        

Fig. 2. Elementary reductive music analysis  and their “metrical wave” interpretations. In (a)-(c) the three reductive analysis examples are attached 

with structural significance labels. The wave shape demonstrates that the structural significance is changing with time. In (d)-(f) we further produce a 

representation “mask” based on the process of building tension and relaxing tension.   
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tension. The tension is resolved by going back to consonant 
note E5. 

D. Implementations 

Currently manual interventions are still required for 
reliable reductive music analysis. For practical applications a 
complete analysis is not always necessary and minor analysis 
mistakes could be tolerated.  In these application scenarios, 
automatic procedures for deriving reductive music structure 
analysis as summarized in [9-11] can be applied. The 
analysis result is then encoded as a multi-dimensional feature 
sequence as semantic annotations for concurring media. 

The complete representation scheme for Schenkerian 
analysis results is detailed in [9] and here we only provide a 
simplified description. In this representation format, we 
focus on the layer-location of music events and their cross-
layer links.  

 For each reductive layer the following basic analysis 
features are included:  

 Score event index: A sequential index of music 
event. The index is based on time order of the onset 
of music events. For concurring music event the 
index order is arbitrary. 

 Score pitch information: The pitch information 
includes the score pitch, which is the MIDI 
sequential number of score pitch, and the pitch class 
number, as the modulo 12 of pitch. Pitch class 
information here assumes octave equivalence. Two 
pitches 𝑎 and 𝑏 are in the same pitch Equivalence 
class if 𝑏 =  12 ∙ 𝑛 + 𝑎 , where 𝑛  is some integer 
[7]. 

 Score timing information: Each different onset 
location is assigned a timing sequential number, in 
this representation only the onset location is 
encoded and the duration of such music event is 
ignored as a simplification. For more details of the 
treatment of timing information in reductive music 
analysis see [7,11]. 

We also assign a structural role to each music note. The 
most important role of a music note is its harmonic features 
and voice leading features. These two types of features is 
based on the connection of music events within one analysis 
layer and serves as contextual features within a reductive 
layer. 

Harmonic Feature:  

 Harmonic support: if the music note are supported 
by certain harmony at the music surface (original 
music score). 0-Supported by concurring music 
event; 1-unsupported by concurring music event but 
belonging to a harmonic support region; 2-not 
supported at the music surface, and not belonging to 
a harmonic support region. 

 Harmonic support type: the harmony category of 
the supported music notes. 

Voice-leading feature: 

 Pitch interval towards left contextual note: The 
pitch interval here is calculated as the ordered pitch 

interval, as the different between two pitches. The 
left contextual note is the most adjacent music 
event.  

 Pitch class interval towards left contextual note: 
The pitch class interval here is calculated as the 
unordered pitch class interval.  For two pitch classes 
𝑎  and 𝑏 , the ordered pitch class interval is 𝑏 −
𝑎 𝑚𝑜𝑑 12. The unordered pitch class interval is the 
smaller of 𝑏 − 𝑎 𝑚𝑜𝑑 12 and 𝑎 − 𝑏 𝑚𝑜𝑑 12. 

 Pitch interval toward right contextual note  

 Pitch class interval toward right contextual note  
The reductive structural labels then encode the 

connections of music notes at adjacent reductive layers. 

 Reduction label: If this note is retained in the next 
reductive layer. 0-the note is kept; 1-this note is 
reduced. 

 Atomic Elaboration Type: Several types of 
elaboration are prescribed as the basis for reduction. 
These elaborations are detailed in [9]. 

III. SEMANTIC MUSICAL FEATURES BASED ON MUSICAL 

EXPRESSIVE FEATURES 

A.  What are Musical Expressive Features? 

Musical expressive features here are defined as the signal 
features extracted from performance audio that reflect the 
subtle but important variations the musicians append beyond 
the score. Musical expressive features are perfect carries of 
music meaning because they are based on human music 
understandings. To perform a music score a professional 
musician need rigorous music training which provides the 
contextual understanding of a musical work, and more 
importantly, to develop a “musical mind” that create the 
subtle modulations and shaping of musical lines that provide 
music’s emotional impact. In this creative process a 
professional musician not only infers plausible expressive 
information from the score and its historical background, but 
also creatively append his/her personal touches [19].  

B. Dimensions of Musical Expressive Features 

The expressive transcription features we proposed 
include two feature categories. Score-level transcription 
features serve as a middle-layer representation that provides 
the feature descriptors that can be reduced to a symbolic 
music score. Performance-level transcription features are 
related to the musical expressive features that depict the 
essential performance information.  

Conventional music transcription algorithms [20] obtain 
score-related audio features including fundamental frequency 
(F0) and onset times from audio analysis. A quantization 
grid is estimated from these audio features, which are further 
split into score-level transcription features and performance-
level features. The score-level transcription features are 
essentially the nearest neighbor of the audio features on a 
quantization grid, while the performance-level features, or 
musical expressive features, are the deviations in the 
performance audio features from the estimated quantization 
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grid. The onset detection results also allow us to partition the 
audio into segments corresponding to individual music notes, 
so additional dimensions of performance-level transcription 
features including dynamics, timbre, articulation and vibrato 
can be obtained from the segmented audio as signal features 
or feature patterns detected from audio segments. More 
details of musical expressive feature is covered in [14].  

The variations of these musical expressive features can 
be readily interpreted as large-scale expectation-relaxation 
patterns. For example, the music tension caused by pitch 
deviation increase is subsequently resolved by pitch 
decrease. The tempo-tension of compressed timeline could 
be resolved by subsequent tempo-relaxation.     

C. Feature Extraction Using Score-Audio Alignment 

Methods 

When a matching music score of the performance audio 
is available, the performance-level features are obtained by 
comparing the score with the audio. First we perform the 
music event alignment algorithm as in [21]. This alignment 
algorithm maps the score music event to the time-frequency 
locations of performance audio using dynamic time warping, 
which optimally aligns the variation pattern of pitch/timing 
features obtained from score and audio. The score pitch is 
converted to a fundamental frequency using a temperament 

system which is derived from a reference frequency point 𝑓�̅� 
with symbolic pitch value 𝑝𝑅 as: 

                      𝑓�̅� = tpa(𝑓�̅�, 𝑝𝑅 ; 𝑝𝑚)                               (1) 
where 𝑝𝑚 is the symbolic pitch value of frequency point 

𝑓�̅� , tpa() indicates a temperament function. For equal 

temperament scale 𝑓�̅� could be calculated as: 

              𝑓�̅�  = tpae(𝑓�̅�, 𝑝𝑅; 𝑝𝑚) =  2
𝑝𝑚−𝑝𝑅

12 ∙ 𝑓�̅�           (2) 

The logarithmic value of 𝑓�̅� is: 

              12∙log
2

𝑓�̅�  =  12 ∙ log
2

𝑓�̅� + 𝑝𝑚 − 𝑝𝑅              (3) 

Here 𝑝𝑚 and 𝑝𝑅 is specified in MIDI value. Since human 
frequency discernment is most acute at mid-frequency 

region, the reference point [𝑝𝑅: 𝑓�̅�] could be selected at this 
frequency region. In our implementation an initial reference 
point is selected as [69:440Hz]. Then we shift the frequency 
reference point in 160 small steps within 1/6 of a semitone 

interval and find the best reference frequency point 𝑓�̅� +

∆𝑓�̅�
∗

 where a F0 alignment cost is minimized. The F0 
alignment cost here is a weighted sum of frequency mis-
alignments 𝑑𝑙  between the audio F0 and the score pitch 
according to the temperament grid as: 

                   𝐶(∆𝑓�̅�) = ∑ 𝜂(𝑓𝑙)|𝑑𝑙(∆𝑓�̅�)|𝐿
𝑙=1                   (4) 

Here |𝑑𝑙(∆𝑓�̅�)|  denotes the frequency distance of 𝑙 th 

alignment event when the reference point shift is ∆𝑓�̅�. The 

small variation ∆𝑓�̅� is incorporated into the reference pitch to 
shift the temperament grid so the 𝑑𝑙 values are changing with 

∆𝑓�̅� . The weights 𝜂(𝑓𝑙)  are based on the frequency 
discrimination model as introduced in [5] and  𝑓𝑙 is the F0 of 
of 𝑙th alignment event. Larger 𝜂(𝑓𝑙)s are assigned for higher 
frequencies (especially for frequencies higher than 2kHz) 
since human can discern frequency better at these 

frequencies. Using the optimal reference frequency point 

𝑓�̅� + ∆𝑓�̅�
∗
 where the alignment result is minimized, we can 

calculate the pitch deviation of each music event by 
comparing the audio pitch and the score pitch.  The pitch 
deviation of music event 𝑙   in the units of cents (A cent 
represents 1/100 of a semitone) is calculated as: 

                   ∆𝑝𝑚 = 1200 ∙ log2
𝑑𝑙(∆𝑓̅𝑅

∗
)

𝑓̅𝑙
                        (5) 

 For our proposed expressive transcription applications, 
the alignment algorithm as in [21] provides score-aided 
music event segmentation functionalities.  For monophonic 
music the segmentation results provide the onset and offset 
of each music events. For polyphonic music the 
segmentation results further group sonic partials into 
instrument tracks. For monophonic music or an instrument 
track of polyphonic music the segmentation result is 
represented as {[𝑒𝑠, 𝑡𝑠]|𝑠 ∈ 1, … 𝑆}, where 𝑒𝑠 denotes a music 
event prescribed by the music score and 𝑡𝑠 denotes its onset 
time location. The expressive timing features are obtained by 
comparing the score timing and the performance timing. The 
time deviation [13] of music event 𝑒𝑠  is calculated as the 
normalized difference between audio onset timing 𝑡(𝑒𝑠) and 
the interpolated score timing �̂�(𝑒𝑠): 

                          𝐹𝑇(𝑒𝑠) =
𝑡(𝑒𝑠+1) − 𝑡(𝑒𝑠)

�̂�(𝑒𝑠+1) − �̂�(𝑒𝑠)
                         (6) 

Here onset time deviation is normalized by the 
interpolated score note duration [9] and the deviation value 
of previous notes is deduced. 𝑡(𝑒𝑠+1) denotes the next onset 
location. 𝐹𝑇(𝑒𝑠)  can be viewed as an indicator of the 
extension (𝐹𝑇(𝑒𝑠) > 1) or compression (𝐹𝑇(𝑒𝑠) < 1) of the 
audio segment of current notes. From different interpolation 
settings of score timing this method produces an expressive 
timing hierarchy. If the score timing interpolation is based on 
a long audio segment, macro-scale timing is obtained. We 
can then shorten the interpolation range to music phrase or 
individual meter for a micro-scale analysis. The score-audio 
alignment results also segment the audio so other 
performance-level feature dimensions including dynamics, 
timbre, articulation and vibrato could be obtained using the 
same feature extraction algorithms as in [14]. 

D. Feature Extraction Using Audio Feature Quantization 

Methods 

When a music score is not available, a quantization 
process [24] is implemented to transform the audio features 
including F0 and onset timing to score-level transcription 
features including score-pitch and score-timing, or further 
format the features as a symbolic music score. The residue 
signal of this quantization process serves as the basis for 
performance-level transcription features including pitch 
deviation and performance timing after calibration. In this 
section the process of audio feature quantization and 
calibration is detailed, with an emphasis on pitch and timing 
features. The process of F0 estimation and onset detection is 
detailed in [20] and will not be covered here.  

  Suppose an F0 sequence we obtained is represented as 
𝑓1 … 𝑓𝑀 , the goal of the pitch quantization process is to 
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obtain the score pitches as the quantized value 𝑝1 … 𝑝𝑀 and 
the performance pitch deviations as the residual values (after 
caliberation) 𝑑1 … 𝑑𝑀 . This task is equivalent of finding a 

quantization code book [ 𝑓𝑚, 𝑓𝑚; 𝑓�̅�, 𝑝𝑚], 𝑚 = 1, … , 𝑀. Here 

𝑓𝑚  and 𝑓𝑚 s serves as the decision boundaries of the 

quantization grid. 𝑓�̅� is the quantized value that is selected if 

𝑓𝑚 ≤ 𝑓𝑚 ≤  𝑓𝑚 and 𝑝𝑚 is its symbolic value. The quantized 

value 𝑓�̅�s form a temperament grid same as (3). The detected 
F0 values are quantized using the initial temperament grid. 

Suppose the frequency quantized values 𝑓1̅ … 𝑓�̅� are selected 
as the nearest neighbors in the quantization grid of the F0 
sequence 𝑓1 … 𝑓𝑀 . The residual values of this quantization 
process are denoted as 𝑑1 … 𝑑𝑀. Then we shift the frequency 
reference point to find the best reference frequency point 

𝑓�̅� + ∆𝑓�̅�
∗

 where a weighted sum of the residual values 

∑ 𝜂(𝑓𝑚)|𝑑𝑚(∆𝑓�̅�)|𝑀
𝑚=1  as calculated in (4) is minimized. 

After this calibration processes the residual frequencies 
according to this optimal temperament grid with values 

𝑑1(∆𝑓�̅�
∗
) … 𝑑𝑀(∆𝑓�̅�

∗
) are pitch deviation values. The pitch 

deviation is then calculated using (4). The pitch calibration 
process we introduced here does not have a significant effect 
on symbolic score detection since in most application 
scenarios the musical pitch is well calibrated and errors in 
the process will never surpass the detection grid of adjacent 
semitones. For expressive feature extraction this calibration 
functionality is crucial because the calibration value is within 
the same range of pitch deviation values.   

  An onset sequence 𝑡1 … 𝑡𝑁  is detected using the 
algorithms in [24] and its inter-onset intervals (IOI) are the 
time distances of adjacent onsets and are calculated as 𝑣𝑛 =
𝑡𝑛+1 − 𝑡𝑛. The rhythmic analysis result is obtained from the 
IOI sequence using the algorithm described in [13]. The 
rhythmic analysis result as obtained can be represented as a 
hierarchical time sequence.  In Fig. 3 a musical timing 
hierarchy and its alignment with audio onsets and IOIs is 
illustrated. The timing hierarchy is stretched or compressed 
according to the beat tracking result. Since we only have a 
limited number of onsets, only part of the music events in 
this rhythmic hierarchy is observed (annotated as open 
circles) and the other part (annotated as filled circles) has to 
be interpolated from adjacent observations. From Fig. 4 it is 
clear that the observed events are concentrated at one 
rhythmic layer. This layer is the most salient rhythmic layer 
in our analysis. For most occasions this layer overlaps with 
the ‘tactus’ layer or foot tapping rate, which is most 
significant in a music cognition perspective [16]. The timing 
value of this layer is denoted as 𝑟1 … 𝑟𝑃 , This beat pattern 
forms a timing descriptor in the macro-analysis level as: 

                                    𝐹𝑇(𝑝) =
𝑃 ∙ 𝑟𝑝

∑ 𝑟𝑝
𝑃
𝑝=1

                                  (7) 

In practical implementation 𝐹𝑇(𝑝) could be smoothed by 
convolving a smoothing kernel [13]. The expressive timing 
values of the music events at other rhythmic layer are then 
sampled from this smoothed variation curve.  The micro-

analysis level timing is obtained by comparing the audio 
onset locations and an interpolated mechanical timing.   

  

 
                                                            (a) 

 
                                                            (b) 

 
Fig. 3. A hierarchical rhythmic analysis result. The rhythmic grid from a 
expressive performance (a) is compared with its mechanical version (b) The 
comparison is at a music phrase level. (a) shows a dramatic expectation-
relaxation pattern as compression and expansion of performance timeline. 

IV. COGNITIVE RELEVANCE OF SEMANTIC MUSICAL 

FEATURES 

A. Cognitive Relevance 

Here we present a simple musical example to illustrate 
the concept of a simple formula that can provide the 
cognitive relevance of our proposed semantic musical 
features. In this example we first program a visualization 
interface based on music expressive features. Specifically 
this visualization interface produces different colors for 
different music timbres. The user watching this visualization 
while listening to the music would notice something after a 
while. He/she finds that this visualization is not mechanically 
following the music score but intuitively “feels” the 
relevance (perceptual relevance). The user feels the 
visualization is better than a mechanical score inference-
based interface because the connections between 
performance timbre and music score is not direct (Actually 
the music timbre is an interpretation produced by the 
musician/performer.  This interpretation is related to the 
musical score in a complex manner [19] but an audience 
could easily discern its relevance).  

In this simple visualization example, the cognitive 
relevance is generated from (1) the plausible interpretation 
produced by the musician (2) the audience’s music 
understanding. As a successful communication process, we 
deliver the right content (control data generated from 
semantic musical structure) to the right audience (who 
appreciate these semantic music structures) and produced a 
musically relevant perceptual experience. Alternatively, we 
could use the feature sequence generated by manual 
reductive music analysis to control the visualization 
interface.  A certain level of musical relevance is then 
expected because the reductive music analysis is “semantic 
data” generated from music theorists (or automatic analysis 
that simulate their procedures) [1,17].  

In this visualization example the musicians who generate 
the music understand the music at a “semantic” level. By 
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implementing content annotation labels related to these 
semantic music features, the user interacting with these 
content labels will feel that a human musician is in control of 
the visualization interface. This human-computer interaction 
based on these annotation labels becomes “interesting” 
because we are indirectly communicating with human 
intelligence. The semantic music patterns we proposed serve 
as a “medium” to distribute human-based music intelligence 
since the human-computer interactions based on these 
features become essentially human (the user) to human (the 
musicians who produced these patterns) interaction.   

A system based on semantic music features possesses 
dramatic advantages compared to a system that employs 
score-based inference. For example, a score-based or music 
transcription based system [20] would just turn the screen to 
certain color for a certain pattern of concurring music notes. 
If the mechanical link between the visualization and the 
music score is too simplistic, the user may easily uncover the 
“formula”. In such a mechanical process and the user could 
quickly become bored discovering the visualization 
“formula”. 

B. Perceptual Tolerance 

The goal of multimedia content annotation is to provide a 
musically-plausible user experience. The perceptual process 
of our audience provides further interpretation of the 
information. This interpretation process provides an 
additional degree of perceptual tolerance for media content. 
Here are some examples of simple computer algorithms can 
give humans the impression of a high degree of cognitive 
relevance, or even a high degree of “machine intelligence”. 

 Joseph Weizenbaum’s 1966 conversation program, 
ELIZA, has consistently fooled people into thinking it 
is human. ELIZA actually employs a simple natural 
language processing algorithm that substitutes a part 
of the sentence with the user input to produce its parts 
in conversation. The program “understood” nothing 
about the conversation. [25:pp.38] 

 The big news in 1997 was the defeat of the world 
chess champion, Garry Kasparov, by IBM’s “Deep 
Blue” chess-playing computer. “Deep Blue” performs 
heuristic searches to evaluate a chess position. Several 
websites mentioned that, after his loss, Kasparov said 
that he sometimes saw deep intelligence and creativity 
in the machine’s moves. [25:pp. 481-482] 

 The 1979 electronic game Pac-Man by Midway 
Games West, Inc. only has simple control routines for 
the game characters. Nevertheless human game 
players reported strategies of game characters: “The 
four of them are programmed to set a trap, with 
“Blinky” leading the player into an ambush where the 
other three lie in wait.” [26]   

      The perceptual tolerance demonstrated by these examples 
arises from the interpretation of the audience in the human-
computer exchanges. For these three examples the computer 
algorithms possess no intelligence but rather, when he 
human obtains the processing results from these algorithms 

they infer the presence of an “intelligent agent”. This 
interpretation provides humans with a generous dose of 
tolerance in the perception of our proposed semantic music 
features. The Eliza example is particularly important because 
the program is merely a mirror that “reflects” the intelligence 
of the user. Such a perceptual process is ubiquitous in music 
and other types of representational arts, where we emphasize 
our perceptions and emotions over instrumental observations 
and objective facts. 

V. SUMMARY 

In this paper we present musical features based on 
semantic music analysis for multimedia annotation 
applications. The resulting features convey human musical 
understanding and provide strong interpretations of music 
data. As intelligent human-music interfaces, these semantic 
musical features find important multimedia applications. 

Several possible extensions of the proposed framework 
include: (1) encoding extended semantic feature dimensions 
such human emotion, human brain response, performer 
gesture (and its recognition), and visual features extracted 
from video; (2) forming a standardized format for music 
semantic annotations. 
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