
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

314

Model for Software Errors Prediction Using Machine

Learning to Improve The Software Reliability

Bonthu Kotaiah

 Research Scholar

Babasaheb Bhimrao Ambedkar

Lucknow, India

kotaiah_bonthuklce@yahoo.com

Raees Ahmed Khan

Associative Professor

Babasaheb Bhimrao Ambedkar

University

Lucknow, India

khanraees@yahoo.com

Muralidhar Vejendla

Associate Professor

TEC,TENALI

Andhra Pradesh India

vmdharprof@gmail.com

Abstract — The Software projects become critical

systems now a days. Measuring software reliability in a

continuous and disciplined manner leads to accurate

estimation of project costs and schedules, and improving

product and process qualities. Also, detailed analysis of

software metric data gives important clues about the

locations of possible errors in a programming code. The

objective of this paper is to establish a method for

identifying software errors using machine learning

methods. We used machine learning methods to construct

a two step model that predicts potentially modules with

errors within a given set of software modules with respect

to their metric data by using Artificial Neural Networks.

The data set used in the experiments is organized in two

forms for learning and predicting purposes; the training

set and the testing set. The experiments show that the two

step model enhances error prediction performance to

improve the Software Reliability.

I. INTRODUCTION

The results of the software reliability measurement are

usually evaluated with naive methods like regression and

correlation between values. Some recent models utilize

machine-learning techniques for error predicting (Neumann,

2002). But the main drawback of using machine learning in

software error prediction is the scarcity of data. Most of the

companies do not share their software metric data with other

organizations so that a useful database with great amount of

data cannot be formed. However, there are publicly available

well-established tools for extracting metrics such as size,

McCabe’s cyclomatic complexity, and Halstead’s program

vocabulary. These tools help automating the data collection

process in software projects to measure the Software

Reliability.

The software metric data gives us the values for specific

variables to measure a specific module/function or the whole

software. When combined with the weighted error/error data,

this data set becomes the input for a machine learning

system. A learning system is defined as a system that is said to

learn from experience with respect to some class of tasks and

performance measure, such that its performance at these tasks

improve with experience (Mitchell, 1997). To design a

learning system, the data set in this work is divided into two

parts: the training data set and the testing data set. Some

predictor functions are defined and trained with respect to

Multi-Layer Perceptron and the results are evaluated with the

testing data set.

The second section gives a previous work done and the

third section deals with dataset used. The fourth section states

the Research Problem and the fifth section explains our

proposed model for error prediction. In the sixth section, the

results of the experiments are shown. The last section

concludes our work and summarizes the future work to be

done.

II. RELATED WORK

A. METRİCS AND SOFTWARE RİSK ASSESMENT

Software metrics are mostly used for the purposes of
product quality and process efficiency analysis and risk
assessment for software projects. Currently there are numerous
metrics for assessing software risks. The early researches on
software metrics have focused their attention mostly on
McCabe, Halstead and lines of code (LOC) metrics. Among
many software metrics, these three categories contain the most
widely used metrics. Also in this work, we decided to use an
evaluation mechanism mainly based on these metrics.

Researchers have used neural network approach to
generate new metrics instead of using metrics that are based on
certain polynomial equations (Boetticher et al., 1993).
Bayesian belief network is also used to make risk assessment
in previous research (Fenton and Neil, 1999). Basic metrics
such as LOC, Halstead and McCabe metrics are used in the
learning process. There is not a similar relation between the
number of errors for the pre- and post-release versions of the
software and the cyclomatic complexity. To overcome this
problem, Bayesian Belief Network is used for error modeling.

mailto:vmdharprof@gmail.com

315

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

B. ERROR PREDICTION AND APPLICATIONS OF

MACHINE LEARNING

Error prediction models can be classified according to the
metrics used and the process step in the software life cycle.
Most of the error models use the basic metrics such as
complexity and size of the software (Henry and Kafura,
1984).The main idea behind the prediction models is to
estimate the reliability of the system, and investigate the effect
of design and testing process over number of errors.

Machine learning algorithms have been proven to be
practical for poorly understood problem domains that have
changing conditions with respect to many values and
regularities. Since software problems can be formulated as
learning processes and classified according to the
characteristics of error, regular machine learning algorithms are
applicable to prepare a probability distribution and analyze
errors (Fenton and Neil, 1999; Zhang, 2000). Machine learning
algorithms can be used over program execution to detect the
number of the faulty runs, which will lead to find underlying
errors. Fault relevant properties are utilized to generate a
model, and this precomputed function selects the properties
that are most likely to cause errors and errors in the software.

Clustering over function call profiles are used to

determine which features enable a model to distinguish

failures and non-failures (Podgurski et al., 2003). Dynamic

invariant detection is used to detect likely invariants from a

test suite and investigate violations that usually indicate

erroneous state. This method is also used to determine

counterexamples and find properties which lead to correct

results for all conditions (Groce and Visser, 2003).

III. METRIC DATA USED

The data set used in this research is provided by the

BELL TELEPHONE LABS IV&V S1 Program for Real Time

Command and Control. The data repository contains software

metrics and associated error data at the function/method level.

The data repository stores and organizes the data which has

been collected and validated by the Metrics Data Program.

The association between the error data and the metrics

data in the repository provides the opportunity to investigate

the relationship of metrics or combinations of metrics to the

software. The data that is made available to general users has

been sanitized and authorized for publication through the

MDP website by officials representing the projects from

which the data has originated. The database uses unique

numeric identifiers to describe the individual error records and

product entries. The level of abstraction allows data

associations to be made without having to reveal specific

information about the originating data.

Some of the product metrics that are included in the data

set are, McCabe Metrics; Cyclomatic Complexity and Design

Complexity, Halstead Metrics; Halstead Content, Halstead

Difficulty, Halstead Effort, Halstead Error Estimate, Halstead

Length, Halstead Level, Halstead Programming Time and

Halstead Volume, LOC Metrics; Lines of Total Code, LOC

Blank, Branch Count, LOC Comments, Number of Operands,

Number of Unique Operands and Number of Unique

Operators, and lastly Error Metrics; Error Count, Error

Density, Number of Errors (with severity and priority

information).

After constructing our data repository, we have cleaned

the data set against marginal values, which may lead our

experiments to faulty results. For each type of feature in the

database, the data containing feature values out of a range of

ten standard deviations from the mean values are deleted from

the database.

Our analysis depends on machine learning techniques so for

this purpose we divided the data set in two groups; the training

set and the testing set. These two groups used for training and

testing experiments are extracted randomly from the overall

data set for each experiment by using a simple shuffle

algorithm. This method provided us with randomly generated

data sets, which are believed to contain evenly distributed

numbers of error data.

IV. PROBLEM STATEMENT

Two types of research can be studied on the code based

metrics in terms of error prediction. The first one is predicting

whether a given code segment contain errors or not. The

second one is predicting the magnitude of the possible error, if

any, with respect to various viewpoints such as density,

severity or priority. Estimating the error causing potential of a

given software project has a very critical value for the

reliability of the project. Our work in this research is primarily

focused on the second type of predictions. But it also includes

some major experiments involving the first type of

predictions.

Given a training data set, a learning system can be set up.

This system would come out with a score point that indicates

how much a test data and code segment is defected. After

predicting this score point, the results can be evaluated with

respect to popular performance functions. The two most

common options here are the Mean Absolute Error (mae) and

the Mean Squared Error (mse). The mae is generally used for

classification, while the mse is most commonly seen in

function approximation.

In this research we used mse since the performance

function for the results of the experiments aims second type of

prediction. Although mae could be a good measure for

classification experiments, in our case, due to the fact that our

316

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

output values are zeros and ones we chose to use some custom

error measures. We will explain them in detail in the results

section.

V. PROPOSED MODEL AND METHODOLOGY

The data set used in this research contains error density

data which corresponds to the total number of errors per 1-000

lines of code. In this research we have used the software

metric data set with this error density data to predict the error

density value for a given project or a module. Artificial neural

networks approach is used to predict the error density values

for a testing data set.
Multi-layer perceptron method is used in ANN

experiments. Multilayer perceptrons are feedforward neural
networks trained with the standard backpropagation algorithm.
Feedforward neural networks provide a general framework for
representing non-linear functional mappings between a set of
input variables and a set of output variables. This is achieved
by representing the nonlinear function of many variables in
terms of compositions of nonlinear functions of a single
variable, which are called activation functions (Bishop, 1995).

In the experiments we first applied ANN approach to
perform a regression based prediction over the whole data set.
According to the experiment results we calculated the
corresponding mse values. Mse values provide the amount of
the spread from the target values. To evaluate the performance
of each algorithm with respect to the mse values, we compared
the square root of the mse values with the standard deviance of
the testing data set. The standard deviation of the data set is in
fact the mse of it when all predictions are equal to the mean
value of the data set. To declare that a specific experiment’s
performance is acceptable, its mse value should be fairly less
than the variance of the data set. Otherwise there is no need to
apply such sophisticated learning methods, one can obtain a
similar level of success by just predicting all values equal to
mean value of the data set.

The first experiments that are done using the whole data

set show that the performance of both algorithms are not in

acceptable ranges as these outcomes are detailed in the results

section. The data set includes mostly non-defected modules so

there happens to be a bias towards underestimating the error

possibility in the prediction process. Also it is obvious that

any other input data set will have the same characteristic since

it is practically likely to have much more non-defected

modules than defected ones in real life software projects.

The three type of experiments explained above guided us

in proposing the novel model for error prediction in software

projects. According to the results of these experiments, better

results are obtained when first a classification is carried out

and then a regression type prediction is done over the data set

which is expected to contain errors. So the model has two

steps, first classifying the input data set with respect to

whether it contain errors or not. After this classification, a new

data set is generated with the values that are predicted as

defected. And a regression is done to predict the error density

values among the new data set.

The novel model predicts the possibly modules contain

errors in a given data set. So the model helps concentrating the

efforts on specific suspected parts of the code so that

significant amount of time and resource can be saved in

software quality process.

Figure: Architecture of Neural Network

VI. RESULTS

In this research, the training and testing are made using
MATLAB’s MLP based on a model for classification and
regression. The data set used in the experiments contains 6-000
training data and 2-000 testing data. The resulting values are
the mean values of 30 separately run experiments.

In designing the experiment set of the MLP algorithm, a

neural network is generated by using linear function as the

output unit activation function. 32 hidden units are used in

network generation and the alpha value is set to 0.01 while the

experiments are done with 200 training cycles.

317

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

A. REGRESSION(DATA SET)

The average variance of the data sets which are

generated randomly by the use of a shuffling algorithm is 1-

402.21 and the mean mse value for the ANN experiments is 1-

295.96. This value is far from being acceptable since the

method fails to approximate the error density values. Figure 1

depicts the scatter graph of the predicted values and the real

values. According to this graph, it is clear that the method

potentially does faulty predictions over the non defected

values. The points laying on the y-axis show that there are

unacceptable amount of faulty predictions for non defected

values. Also apart from missing to predict the non defected

ones, it is obvious that the method is biased towards smaller

approximations on the predictions for defected items because

vast amount of predictions lay under the line which depicts the

correct predictions.

Figure 1. The predicted values and the real values in ANN

experiments

B. REGRESSION OVER THE DATA SET(ONLY DEFECTED

ITEMS)

The second type of experiments are done with input data
sets which contain only defected items.

The average variance of the data sets used in the ANN
experiments are 1-637.41 and the mean mse value is 262.61.
According to these results the MLP algorithm approximates the

error density values well when only defected items reside in
the input data set. It also shows that the dense non defected
data effects the prediction capability of the algorithm in a
negative manner. Figure 2 shows the predicted values and the
real values after an ANN experiment run. The algorithm
estimates the error density value better for smaller values as
seen from the graph, where the scatter deviates more from the
line that depicts the correct predictions for higher values of
error density.

Figure 2. The predicted values and the real values in ANN
experiments where the input data set contains only defected

items

C. CLASSIFICATION(DEFECTEDNESS)

In the ANN experiments the clustering algorithm is partly

successful in predicting the defected items. The mean

percentage of the correct predictions is 88.35% for ANN

experiments. The mean percentage of correct defected

predictions is 54.44% whereas the mean percentage of correct

non defected predictions is 97.28%. These results show that

the method is very successful in finding out the really defected

items. It is capable of finding out three out of every four

defected items.

As a result, it can be deduced that we divide the error

prediction problem into two parts. The first part consists of

predicting whether a given module contains errors or not. And

the second part is predicting the magnitude of the possible

error if it is labeled as defected by the first type. We

understand that predicting the error density value among a

data set containing only defected items brings much better

318

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

results than the case that the whole data set is used where an

intrinsic bias towards lessening the magnitude of the error

arises. Also by dividing the problem into two separate

problems, and knowing that second part is successful enough

in predicting the error density, it is possible to improve the

overall performance of the learning system by improving the

performance of the classification part.

VII. CONCLUSION

In this research, we proposed a new error prediction

model based on machine learning methods. Since most

modules in the input data have zero errors (80% of the whole

data), applied machine learning methods fail to predict scores

within expected performance. Even if an algorithm claims that

a test data doesn’t contain errors though it did not try to learn

at all, the 80% success is guaranteed. Therefore logic behind

the learning methodology fails. Different methodology which

can manage such data set for software metrics is required.

By using our two step approach, along with predicting

which modules contain errors, the model generates estimations

on the error magnitudes. The software practitioners may use

these estimation values in making decisions about the

resources and effort in software quality processes such as

testing. Our model constitutes to a well risk assessment

technique in software projects regarding the code metrics data

about the project.

As a future work, different machine learning algorithms

or improved versions of the used machine learning algorithms

like decision trees and neuro-fuzzy systems may be included

in the experiments. Also this model can be applied to other

risk assessment procedures which can be supplied as input to

the system. Certainly these risk issues should have

quantitative representations to be considered as an input for

our system.

REFERENCES

Bertolino, A., and Strigini, L., 1996. On the Use of Testability

Measures for Dependability Assessment, IEEE Trans.

Software Engineering, vol. 22, no. 2, pp. 97-108.

Bishop, M., 1995, Neural Networks for Pattern Recognition,

Oxford University Press.

Boetticher, G.D., Srinivas, K., Eichmann, D., 1993. A Neural

Net-Based Approach to Software Metrics, Proceedings of

the Fifth International Conference on Software

Engineering and Knowledge Engineering, San Francisco,

pp. 271-274.

CHAOS Chronicles, The Standish Group - Standish Group

Internal Report, 1995.

Cusumano, M.A., 1991. Japan’s Software Factories, Oxford

University Press.

Diaz, M., and Sligo, J., 1997. How Software Process

Improvement Helped Motorola, IEEE Software, vol. 14,

no. 5, pp. 75-81.

Dickinson, W., Leon, D., Podgurski, A., 2001. Finding

failures by cluster analysis of execution profiles. In ICSE,

pages 339– 348.

Fenton, N., and Neil, M., 1999. A critique of software error

prediction models, IEEE Transactions on Software

Engineering, Vol. 25, No. 5, pp. 675-689.

Groce, and Visser, W., 2003. What went wrong: Explaining

counterexamples, In SPIN 2003, pages 121–135.

Jensen, F.V., 1996. An Introduction to Bayesian Networks,

Springer.

Henry, S., and Kafura, D., 1984. The Evaluation of Software

System’s Structure Using Quantitative Software Metrics,

Software Practice and Experience, vol. 14, no. 6, pp. 561-

573.

Hudepohl, P., Khoshgoftaar, M., Mayrand, J., 1996.

Integrating Metrics and Models for Software Risk

Assessment, The Seventh International Symposium on

Software Reliability Engineering (ISSRE '96).

Mr. Bonthu Kotaiah obtained his Bachelor's

degree in Computer Applications

fromNagarjuna University in 2001 and M.C.A

from Nagarjuna University in 2008. During

the

period from September, 2001 to 2011, he has

been involved in various aspects of

Information Technology-an engineer (L-Cube

Innovative Solutions), a Corporate Trainer

(SyncSoft&Datapro (Vijayawada),COSS(Hyd.)), a

Programmer (Acharya Nagarjuna University). His research

interests include software Engineering, Neural networks,

Fuzzy Systems. Presently, he is a Full-Time Research Scholar

in Babasaheb Bhimrao Ambedkar University (A Central

University) Lucknow, UP in the Department of Information

Technology.

 Dr. R.A. Khan, Presently Working with

Babasaheb Bhimrao Ambedkar University(A

Central University) Lucknow, UP as an

Associate Professor & Head in the

Department of Information Technology,

School for Information Science & Technology

since December 2006. He is having More than

Ten Years of teaching experience He obtained

Ph.D. from Jamia Millia Islamia (A Central

319

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.47 e-ISSN: 2251-7545

University) New Delhi (2004).

MURALIDHAR.V is Post graduated in M.C.A

and M.Tech (C.S.E) from Acharya Nagarjuna

University- Guntur. He is working as Associate

Professor in Computer Science Engineering

Department for the last 4 years and also Persuing

Research from Acharya Nagarjuna University on

Software Reliability. His Area of Interested is

Software Engineering, Image Processing, Data

Mining and Neural Networks.

