
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

320

GUI Test Coverage Analysis using NSGA II

Abdul Rauf
CCIS,Al-Imam Muhammad Bin Saud

University, Riyadh, KSA. 11432
rauf.malik@ccis.imamu.edu.sa

Eisa Aleisa
CCIS,Al-Imam Muhammad Bin Saud

University, Riyadh, KSA. 11432
eisa@ccis.imamu.edu.sa

Imam Bakhsh
CCIS,Al-Imam Muhammad Bin Saud

University, Riyadh, KSA. 11432
imam.bakhsh@ccis.imamu.edu.sa

Abstract—Graphical User Interface (GUI) is a mean of

interaction between an end user and a software system. Software

systems have gained an unprecedented popularity in last twenty

years or so and the biggest factor behind this success is Graphical

user interface. Software developing companies and teams have

always shown a thirst for fully assured high quality software. To

fulfill this deep desire of companies, software must go through an

intensive testing, but it seems almost impossible to test a GUI

application manually due to complexity involve in such effort.

Obvious alternative is to go for automated testing. Models or

Graphs are being considered as basis for automated GUI testing.

Event-flow graph is one of several efforts towards automation of

GUI testing. Thorough testing to satisfy the test organization or

team’s demands is also a terminology, facing lack of consensus

among different researchers. Usually test criterion corresponds a

“coverage function” that measures how much of the

automatically generated optimization parameters satisfies the

given test criterion. Our past work has demonstrated that with

the help of evolutionary algorithms and event flow representation

we can get promising test coverage of GUI applications. Now we

are going to extend our previous work and proposing the use of

an evolutionary algorithm to gain multiple objectives. These

objectives are to gain maximum coverage while keeping number

of test cases at minimum side, and the evolutionary algorithm we

are going to use for this purpose is Non-dominated Sorting

Genetic Algorithm II (NSGA-II).

Keywords- GUI Testing; Multiobjective optimization; Coverage

Criterion; Coverage Analysis; Event Flow; Test Data Generation;

NSGA-II; Automation Testing;

I. INTRODUCTION

Software Testing is probably most significant and
imperative phase in software development life cycle. An
emergent apprehension among organizations developing
software is regarding a comprehensive and accurate but speedy
software testing process. Traditionally software testing is a
challenging activity from all three prospective; time, cost and
effort. According to a study [1], software testing is consuming
more or less 67% of the entire cost of software development
[1]. Keeping this growing concerns involved, automated testing
is getting very rapid popularity. Major advantages being
offered by automated software testing are speedy test execution
process, smooth and repeatable testing process as well as a
high coverage of functionality.

Second vital concept of our research relates to Graphical
User Interface (GUI). Importance of GUI is also one of the

most emergent practical areas in computer science mainly
because of ease and flexibility provided by these interfaces [2].
Contrary to its popularity in practice and development, GUI
Testing is unable to gain the momentum in research field. A
user can access a particular component in a software system by
following several itineraries of events. Above mentioned fact
depicts the freedom offered by GUI. Large numbers of
permutations of events and complex event interactions of GUIs
present new challenges both for researchers and practitioners of
GUI testing area.

In traditional software testing, the evolutionary algorithms
(EAs) have been used to prevail over challenges of manual
software testing by introducing different flavors of automation
in software testing. Most of the times, two major types of
evolutionary algorithms have been used for software testing:
Single objective evolutionary algorithms and multiple objective
evolutionary algorithms. A general single-objective
optimization problem is defined as minimizing (or
maximizing) f(x) subject to gi(x) ≤ 0, i = {1,2, 3. . . , m}, and
hj(x) = 0, j = {1,2,3 . . . , p} x Ω. A solution minimizes (or
maximizes) the scalar f(x) where x is a n-dimensional decision
variable vector x = (x1,x2. . . , xn) from some universe Ω [4].
Genetic algorithm (GA) belongs to evolutionary algorithms
family and works on single objective optimization principle.
GA can be used for finding out optimized test suite for GUI
testing as well as it can be used for coverage analysis [3]. In
case of GUI testing, genetic algorithm searches for optimal test
parameter combinations that satisfy a predefined test criterion.
This test criterion is represented through a “coverage function”
that measures how much of the automatically generated
optimization parameters satisfies the given test criterion. In
contrast to single objective optimization provided by GA,
nondominated sorting genetic algorithm II (NSGA-II) is one of
the most prominent multiobjective evolutionary algorithms
(MOEAs) used because it relies heavily on its density estimator
mechanisms [4]. In this paper we are proposing GUI test
automation by NSGA-II based on event flow nature of GUI.
NSGA-II will cover the following objectives.

 To minimize the number of event based GUI test

cases.

 To maximize the coverage of GUI test cases.

The remainder of the paper is organized as follows: in next

Section, we discuss related work in field of software testing,
GUI testing and optimization techniques. Section 3 describes

mailto:rauf.malik@ccis.imamu.edu.sa
mailto:eisa@ccis.imamu.edu.sa
mailto:imam.bakhsh@ccis.imamu.edu.sa

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

321

proposed method in detail. Section 4 presents results of
experiments related to test case optimization and maximizing
coverage, while in section 5, some future directions have been
presented and section 6 concludes the paper.

II. RELATED WORK

Most of the techniques used to test GUIs are being
extended from techniques that were used to test simple
command line interfaces programs earlier. However, most of
these extensions are not as successful when they are applied to
GUI’s as they are in case of software. Although model based
techniques have been used frequently for software testing, but
models are very expensive to create, and their applicability is
limited as well. For these reasons, model based techniques are
not being used for GUI testing frequently, but in past few
years, efforts have been made for developing different models
for GUI testing. Atif M. Memon and his team have worked a
lot in automated GUI testing [8, 9]. They have used several
types of graph models (e.g., event-flow graphs) to generate
specific types of test cases [8, 9]. In [6], the authors have
gathered all the models into one scalable event-flow model and
sketches algorithms to semi-automatic reverse engineering an
application model. Atif M. memon and Xie also created an
event-interaction graph (EIG) [6, 7]. Kasik and George [11]
have an innovative idea to resemble novice GUI users. White
L, Almezen H, Alzeidi N. has developed a technique to address
the User-based testing of GUI sequences and their interaction
[12]. White L and Almezen H. have also given techniques to
generate test cases responsibilities of graphical user interface
using complete interaction sequences [13]. In [9, 10, 14, 15],
there have been a number of studies that use genetic algorithms
(GA's) for software testing. Jones et al proposed a technique to
generate test-data for branch coverage using GA [16, 17]. This
technique has shown good results with number of small
programs. Pargas et al used a GA based on the control
dependence graph to search for test data that give good
coverage [18]. They used the original test suite developed for
the SUT as the seed for the GA. They compare their system to
random testing on six small C programs. For the smallest
programs, there is no difference, but for the three largest
programs, the GA-based method outperforms random testing.
Tracey et al presents a framework for test-data generation
based on optimization algorithms for structural testing [19].
Tracey has also used a similar technique for functional (black-
box) testing. The research by Tracey et al is unique in that they
have evaluated their techniques on a real-world safety-critical
system [19]. Yongzhong Lu et al presented a new GUI
automation test model based on the event-flow graph modeling
[20]. In this model, the authors have presented a technique to
generate test cases in the daily smoke test based on an
improved ACO and a spanning tree is utilized to create test
cases in the deep regression test [20].

Wasif Afzal et al [21] have presented a systematic mapping
study of a comprehensive review of primary studies in search
engine optimization techniques based on functional tests
currently offered. This study is an attempt to identify gaps in
the application to query optimization techniques based on
different types of non-functional testing.

III. PROBLEM MODELING

In this section we are going to discuss some technical terms
related to multi objective optimization problems and working
of NSGA-II. Also modeling of multi-objective optimization
problem to our scenario is presented in this section.

The multiobjective optimization problem can be defined as
“a vector of decision variables which satisfies constraints and
optimizes a vector function whose elements represent the
objective functions. These functions form a mathematical
description of performance criteria which is usually to resolve
each. Therefore, the term "optimize" means finding such a
solution that can give the value of all objective functions
acceptable to the manufacturer's decision [5].

In multiobjective optimization problem, we have multiple
functions to optimize, so the concept of optimizing function
changes. As we have to find a good tradeoff between function
values. In our case, we have two objectives and which are
inversely proportional to each other; i.e. maximizing one
objective results in the minimization of the other objective
function. Our objective functions are number of test cases and
required coverage. So we have to find a good compromise in
between optimization of both objectives. The most commonly
accepted term for finding this optimum solution is Pareto
optimum. “A solution x ε Ω is said to be Pareto Optimal with

respect to (w.r.t.) Ω if and only if (iff) there is no x for

which 1() (()...... ())nv F x f x f x
 dominates

1() (()...... ())nu F x f x f x
[23, 24, 25].

IV. PROPOSED METHOD

A GUI is a hierarchical, graphical front-end to a software
system that accepts as input user-generated and system-
generated events from a fixed set of events and produces
deterministic graphical output [3]. A GUI contains graphical
objects; each object has a fixed set of properties. At any time
during the execution of the GUI, these properties have discrete
values, the set of which constitutes the state of the GUI [3].

To test GUI and analyze the coverage, we have proposed a
method based upon Multi Objective Genetic Algorithms
(MOGAs). For this purpose we have used NSGA-II (A well
Known version of MOGA). These objectives are to gain
maximum coverage while keeping number of test cases at
minimum side, and the evolutionary algorithm.

NSGA is a popular non-domination based genetic
algorithm for multi-objective optimization. A modified version,
NSGA-II ([3]) was developed, which has a better sorting
algorithm , incorporates elitism and no sharing parameter needs
to be chosen a priori. To test GUI and analyze the coverage, we
have proposed a method based upon NSGA-II.

Working of NSGA-II has been explained with the help of a
block diagram in figure 1.

We have divided our proposed system into two major blocks.

 Test data [test cases] generation

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

322

 Optimization [minimization] of test paths [cases]
using NSGA-II

Figure 1. Figure 01: Block Diagram of NSGA-II

Initialize Population

 Sort Based upon Rank

 Sort Based upon Crowding Distance

Sort Population

Calculate Fitness

 Select Using Tournament

Selection
Selection

Create Intermediate Population

 Crossover Mutation

Reproduction Operator

 # of

Generations>500 End

Rank

Generate Initial Population within Specified Range

Decision

Variables

Value of

Objective

Function

Crowding

Distance

Start

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

323

A. Test Data Generation

For test data generation, we have used event based
techniques. For this purpose we have developed a calculator
that receives inputs both from mouse as well as from the
keyboard. For every event, there is a unique event ID, as an
event occurs, by the help of mouse or a key stroke, respective
event ID gets added into event recorder as has been shown in
figure 2. After completion of user interaction with the
calculator, a sequence of events is formulated, this is passed to
next phase for further analysis. Sequence of generated events
has been shown in figure 3.

Figure 2. Figure 02: Event ID’s of Calculator Application

Figure 3. Figure 03: Sequence of Generated Events

B. Optimization of Test Paths using NSGA-II

Genetic algorithms are inspired by Darwin's theory about

evolution. Solution to a problem SOLVED BY genetic

algorithms is developed. Algorithm starts with a set of

solutions (represented by chromosomes) CALLED

POPULATION. Solutions from a population sampled and used

to form a new population. Following are steps of NSGA-II that

we followed for analysis of test path coverage analysis:

1) Initialize the population

Generate random population of n chromosomes.
Chromosomes have been formed from the captured events
sequences as shown above. Length of our chromosome is the
longest path (Longest test case). We have initialized these
chromosomes between 1 and maximum length of the test case.

2) Sort the population using non-domination-sort

In this case we have sorted the population using non-
domination-sort. This returns two vectors for each individual
which are the rank and the crowding distance corresponding to
their position in the front they belong. At this stage the rank
and the crowding distance for each chromosome is added to the
chromosome vector for ease of computation.

3) Start the evolution process
 Population is initialized with random values which are

within the specified range. Each chromosome consists of the
decision variables. Our fitness function is how much test cases
have successfully validated?

Accuracy = Test Paths covered by chromosome/ Total

number of chromosome

4) For each generation

a) Select the parents which are fit for reproduction

Select two parent chromosomes from a population

according to higher fitness.

b) Perform crossover and Mutation operator on the

selected parents. We have applied these

reproduction operators to increase the coverage

efficiency. Also we have generated a random

number to find the mutation point in

chromosome.

c) Create Intermediate population Intermediate

population is the combined population of parents

and offsprings of the current generation.

d) Non-domination-sort of intermediate population

e) Perform Selection

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

324

5) end

V. RESULTS AND DISCUSSION

Our proposed method resolves the multi-objective problem
by using non-dominance based selection. Our technique
initially generates multiple solutions and then optimizes the
solutions using crowding distance and ranking. The solutions
are then evaluated using the pre-defined multiple quality
measures. Then non-dominating solutions are selected to build
Pareto Front. Table 01 show the coverage achieved against
number of generations for which the experimentation was
performed.

In the figure 04, graph has been shown for pareto front
formed by plotting coverage achieved and number of test cases.
Fig 04 shows that while trying to maximize one objective, we
are facing a tradeoff in form of minimization in other objective
function. Hence we have to find a good compromise in
between optimization of both objectives depending upon the
requirements and circumstances. Also the results have shown
the overall effectiveness and improvement that our proposed
technique has achieved in effective coverage analysis. We are
in the process of generating further test cases for other
applications to further examine the performance of our
approach for coverage analysis.

TABLE I. COVERAGE ACHIEVED ACCORDING TO NUMBER OF

GENERATIONS

Number of Generations Coverage Achieved

300 70%

325 73%

350 78%

375 82%

400 85%

425 90%

450 91%

475 91%

500 91%

VI. CONCLUSION AND FUTURE WORK

Graphical User Interface testing has always been
considered a critical element of overall testing paradigm for
software applications. In this paper, we have proposed a multi
objective genetic algorithm based technique for coverage
analysis of GUI testing. The technique has been subjected to
extensive testing, and the experiments have shown encouraging
results. The results have also shown enhanced coverage
increase in number of generations. The proposed technique

offers an exciting new area of research which can be applied
using different other artificial intelligence techniques.

Our aim is to extend this technique in such a way that it is
automatically able to generate correct test data for the complete
test coverage.

Coverage Analysis

65

70

75

80

85

90

95

50 54 58 62 66 70 74 78 82 86 90 94 98 10
2

10
6

11
0

11
4

11
8

Number of Test Cases
C

o
v

e
ra

g
e

 A
c

h
ie

v
e

d

Figure 4. Coverage analysis of proposes technique

REFERENCES

[1]: Hackner, D. R. and Memon, A. M. 2008. Test case generator for
GUITAR. In Companion of the 30th international Conference on Software

Engineering (Leipzig, Germany, May 10 - 18, 2008). ICSE Companion '08.

ACM, New York, NY, 959-960.
[2]: Memon, A. M. et al. An event-flow model of GUI-based applications for

testing: Research Articles. Softw. Test. Verif. Reliab. 17, 3 (Sep. 2007), 137-

157. DOI= http://dx.doi.org/10.1002/stvr.v17:3
[3]: Abdul Rauf et al, “Automated GUI Test Coverage Analysis using GA”

2010 Seventh International Conference on Information Technology (ITNG

2010) to be held 12-14 April 2010 in Las Vegas, Nevada, USA
[4]: Evolutionary Algorithms for Solving Multi-Objective Problems book by

Carlos A. Coello Coello Gary B. Lamont David A. Van Veldhuizen

[5]: A. Osyczka. Multicriteria optimization for engineering design. In J. S.
Gero, editor, Design Optimization, pages 193–227. Academic Press, 1985.

[6]: Memon, A. M. 2007 et al. An event-flow model of GUI-based

applications for testing: Research Articles. Softw. Test. Verif. Reliab. 17, 3
(Sep. 2007), 137-157. DOI= http://dx.doi.org/10.1002/stvr.v17:3

[7]: Qing Xie and Atif M Memon. Using a pilot study to derive a GUI model

for automated testing ACM Transactions on Software Engineering and
Methodology Volume 18 , Issue 2 (November 2008) Article No. 7 Year of

Publication: 2008 ISSN:1049-331X

[8]: MEMON, A. M. 2001 et al. A comprehensive framework for testing
graphical user interfaces. Ph.D. dissertation. Department of Computer Science,

University of Pittsburgh, Pittsburgh, PA.

[9]: Memon AM, Xie Q. Studying the fault-detection effectiveness of GUI test
cases for rapidly evolving software. IEEE Transactions on Software

Engineering 2005; 31(10):884–896.

http://dx.doi.org/10.1002/stvr.v17:3
http://dx.doi.org/10.1002/stvr.v17:3

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.48 e-ISSN: 2251-7545

325

[10]: Atif M. Memon , Mary Lou Soffa , Martha E. Pollack, Coverage criteria
for GUI testing, Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium on

Foundations of software engineering, September 10-14, 2001, Vienna, Austria
[11]: David J. Kasik , Harry G. George, Toward automatic generation of

novice user test scripts, Proceedings of the SIGCHI conference on Human

factors in computing systems: common ground, p.244-251, April 13-18, 1996,
Vancouver, British Columbia, Canada [doi>10.1145/238386.238519]

[12]: White L, Almezen H, Alzeidi N. User-based testing of GUI sequences

and their interaction. Proceedings of the International Symposium on Software
Reliability Engineering, 8–11 November 2001. IEEE Computer Society Press:

Piscataway, NJ, 2001; 54–63.

[13]: White L, Almezen H. Generating test cases for GUI responsibilities
using complete interaction sequences. Proceedings of the International

Symposium on Software Reliability Engineering, 8–11 October 2000. IEEE

Computer Society Press: Piscataway, NJ, 2000; 110–121.
[14]: Memon AM, Pollack ME, Soffa ML. Using a goal-driven approach to

generate test cases for GUIs. Proceedings of the 21st International Conference

on Software Engineering, May 1999. ACM Press: New York, 1999; 257–266.
[15]: Memon AM, Pollack ME, Soffa ML. Hierarchical GUI test-case

generation using automated planning. IEEE Transactions on Software

Engineering 2001; 27(2):144–155.
[16]: B.F. Jones, D.E. Eyres, H.H. Sthamer, A strategy for using Genetic

Algorithms to automate branch and fault-based testing, The Computer Journal

41(2) (1998) 98-107.
 [17]: B.F. Jones, H.H. Sthamer, D.E. Eyers, Automatic structural testing

using genetic algorithms, The Software Engineering Journal 11(5) (1996) 299-

306.
[18]: R. Pargas, M. J. Harrold, and R. Peck. Test-data generation using genetic

algorithms Journal of Software Testing, Verification and Reliability,

9(4):263–282, 1999.
 [19]: N. Tracey, J. Clark, K. Mander, J. McDermid, Automated test-data

generation for exception conditions, Software Practice and Experience, 30(1)

(2000) 61-79
[20]: Yongzhong Lu Danping Yan Songlin Nie Chun Wang, Development

of an Improved GUI Automation Test System Based on Event-Flow Graph.

International Conference on Computer Science and Software Engineering,
Date: 12-14 Dec. 2008

[21]: Afzal, W., Torkar, R., and Feldt, R. 2009. A systematic review of

search-based testing for non-functional system properties.Inf. Softw.
Technol. 51, 6 (Jun. 2009), 957-976.

[22]: {Ferligoj1992} A. Ferligoj and V. Batagelj, ''Direct multicriterion

clustering,'' J. Classification, vol. 9, pp. 43-61, 1992
[23] C. A. Coello Coello. Theoretical and Numerical Constraint-Handling

Techniques used with Evolutionary Algorithms: A Survey of the State of the

Art. Computer Methods in Applied Mechanics and Engineering,
191(1112):1245–1287, January 2002.

[24] C. A. Coello Coello and G. B. Lamont, editors. Applications of Multi-
Objective Evolutionary Algorithms. World Scientific, Singapore, 2004. ISBN

981-256-106-4.

[25] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. PhD thesis, Department of

Electrical and Computer Engineering. Graduate School of Engineering. Air

Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.

http://doi.acm.org/10.1145/238386.238519

