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Abstract—Cloud computing uses a great amount of 
heterogeneous resources to deliver countless different services to 
users of distinctive quality of services (QoS) requirements. 
Numerous diverse tasks need to be carried out to meet the vastly 
different QoS and budget requirements.  Workflow scheduling 
is therefore critical for the success of large-scale cloud 
computing. Particle Swarm Optimization (PSO) has been 
adopted for workflow scheduling in cloud computing, yet most 
existing works focused on a single objective. This paper 
proposes a tunable fitness function for the PSO algorithm, based 
on which a workflow schedule may be selected for minimal cost 
or minimal makespan (completion time), or any level in 
between. A heuristics is further proposed to address bottleneck 
problems andattains a smaller makespan. Performance 
evaluation and complexity analysis are both presented, which 
show that the proposed algorithm surpasses the existing ones in 
both cost and makespan while maintaining a reasonable load 
balance and keeping the same time complexity. We believe that 
the tunable fitness function-based PSO have many potential 
applications in other soft computing and distributed computing 
models. 

Keywords: cloud computing, makespan, particle swarm 
optimization (PSO), soft computing, workflow scheduling 

I. INTRODUCTION 
Cloud computing is a new paradigm for distributed 

computing.Itdeliversa poolof abstracted, 
virtualizedresources, including computing power, storage, 
platforms and software applications over the Internet based 
on users’ demand [1].Due to its many benefits such as 
elastic, scalable resource provision and cost-effectiveness, 
cloud computing has attracted a rapidly increasing number of 
users.  

Cloud computing offers a great variety of services. Based 
on the level of services, they are generally divided into three 
categories: Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS), and Software as a Service (SaaS). IaaS puts 
servers, storage, networks, and data center fabrics together as 
demanded by users. Cloud users can then install operating 
system images and deploy their applications based on the 
infrastructure. PaaS, on the other hand, provides middleware, 
database and development tools. It enables users to deploy 

applications onto a virtualized cloud platform [2]. Finally, in 
SaaS the complete operating environment, along with 
applications, management, and user interfaces, are provided to 
cloud users [3]. Since all these services are made available as 
subscription-based in a pay-per-use model, cloud computing 
leverages many attractive features to users, including low cost 
and simple management. 

There are many technical challenges faced by cloud 
providers, such as maintaining high utilization while 
delivering services that arelow cost, short delay, and dynamic 
deployable.It is critical for cloud providers to maintain an 
optimal workflow scheduling and management system to 
meet these challenges. 

A workflow is formed by a logical sequence of 
interdependent tasks decomposed from applications [4]. 
Acloud workflow system is vital for supporting large-scale e-
science and e-business applications [5]. Workflow 
scheduling is one of the key components in a workflow 
management system. The scheduler decides which resources 
will be used, as well as which tasks will be executed on each 
of these resources. It allocates suitable resources to workflow 
tasks so that the execution can be completed while 
satisfyingthe QoS constraints set by users, such as execution 
time and cost. The workflow scheduling problem, like 
general scheduling problems, is NP-complete. Workflow 
scheduling algorithms often utilize heuristics and meta-
heuristics, includingsoft computing techniques, to obtain 
approximated solutions. 

In this paper, we adopt a workflow scheduling strategy 
using Particle Swarm Optimization (PSO). PSO, an applied 
soft computing method developed by Kennedy and Eberhart 
[6], is one of the latest evolutionary algorithms inspired by 
nature.PSO approximates an optimal solution by iteratively 
improving a swarm of candidate solutions, called particles. 
Each particle is modified iteratively by the best information 
from both the individual and the entire swarm. Due to the 
collective intelligence of these particles, the swarm is 
expected tomove toward the best solutions. PSO works well 
on most global optimal problems [6, 7]. In addition it is 
simple, effective, and of low computational cost. 
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Makespan and cost are two main performance 
measurement criteria specified by cloud users and considered 
by workflow schedulers [8-15]. Makespan is the time from 
the beginningtillthe completion of the sequence of tasksina 
workflow. Different application schedulers may use different 
policies with different objectives. Some algorithms are 
designed to achieve minimumcost[9, 12, 14] while others 
strives for minimum makespan [13] or for load balance [14]. 
Most existing algorithms focus on achieving a single optimal 
criterion [12-14]. 

In this paper, a workflow scheduling strategy to attaina 
combined minimal cost and minimal makespan is introduced. 
Moreover, the objective is adjustable between minimal cost 
and minimal makespan, able to satisfy users’ various quality 
of services (QoS) requirements.  

The main contributions of this paper are: 
1. A model for a mapping between tasks and resources is 

formulated, achieving a tunable objective between cost 
and makespan. 

2. A PSO-based heuristics is presented to realize the 
optimal mapping for the tunable objective. 

3. The heuristics is further improved by addressing 
bottleneck tasks and thus reduces the makespan even 
more. 

4. While most PSO papers simply use a fixed particle 
number in their experiments, the effect of the number of 
particles in the PSO performance is studied. 

The rest of the paper is organized as follows: Section 2 
discusses related work. The scheduling problem formulation 
is described in Section 3. In Section 4 we present our 
scheduling algorithms using PSO. Experimental results and 
complexity analysis are derived in Section 5. Finally, Section 
6 concludes the paper. 

II. RELATEDWORK 
This section discusses first the major works of workflow 

scheduling for grid and cloud environments. Next, we focus 
on those based on soft-computing approaches. 

Task scheduling is an NP-Complete problem. Most 
efforts are therefore concentrated on heuristics and meta-
heuristics. Yu and Buyya [16] studied several workflow 
scheduling algorithms in a grid environment, such as Min-
Min, Max-Min, Heterogeneous Earliest-Finish-Time (HEFT) 
algorithm [17], and Greedy Randomized Adaptive Search 
Procedure (GRASP) algorithm [18]. Liu, et al proposed a 
compromised-time-cost scheduling algorithm [8]. They 
considered the characteristics of cloud computing to 
accommodate instance-intensive cost-constrained workflows 
by compromising execution time and cost with user input 
enabled on the fly. The hybrid cloud optimized cost (HCOC) 
algorithm, proposed by Bittencourt and Madeira [9], 
schedules the workflow first in a private cloud, and 
reschedules it onto a public cloud if the user deadline cannot 
be met. Xu et al proposed a scheduling strategy for multiple 
workflows and multiple QoS requirements [10]. The 
algorithm considers several factors affecting the makespan 
and cost of workflow; based on which a scheduling is 

generated to satisfy users’ QoS requirements while 
increasing the success rate of the workflow scheduling.  

Several soft-computing approaches have been adopted to 
solve workflow scheduling problem, including genetic 
algorithm (GA) [11,12] and PSO [13-15, 19], etc. These 
algorithms are evolutionary optimization algorithms inspired 
by nature. Several studies have shown that PSO-based 
algorithms have faster convergence and better scheduling 
results that GA methods [13, 19]. Zhang et al adopted a PSO-
based task scheduling algorithm on a grid environment, with 
an objective to minimize the completion time [13]. They 
have found that the PSO-based method has reached results 
that are better than the GA approach. Pandey, et al proposed 
a PSO-based scheduling algorithm to minimize the total cost 
of workflow [14]. It takes into account both execution and 
transfer costs, and defines the maximum resource cost as the 
fitness function to achieve load balance. Wu et al proposed a 
revised discrete PSO scheduling algorithm, with the sum of 
makespan and total cost as its fitness function [15]. 

Note that most of existing works addressed a single 
fitness function (makespan[13] or cost [14]), a constrained 
single objective [12], or a fitness function that is the sum of 
makespan and cost [15]. We proposed a tunablefitness 
function, which may be easily adjusted according to users’ 
priorities and QoS requirements, as described next. 

III. SCHEDULING PROBLEM FORMULATION 
In the following, we adopt the general model and notation 

used by existing works on PSO-based scheduling [14, 15]. A 
workflow is commonly represented by a Directed Acyclic 
Graph (DAG), denoted by � = (�,�) . Let the number of 
tasks in workflowbe � . The set of nodes � =
{��, … , ��}represents the tasks in the workflow applications, 
where n is the total number of tasks. The set of arcs � =
����� 1 ≤ �, �≤ � represents the data dependencies amongthe 
tasks. An arc, ���= (��, ��) ∈ �, implies that�� transfers data 
to ��. In this relationship,�� is the parent task of��, and ��is 
the child of ��. The child task can be executed only after it 
receives data transferred from all of its parents. Fig. 1 shows 
a workflow example of 8 interdependent tasks. Note that any 
single task can have one or more children (except for the 
bottom nodes), and any single task can have one or more 
parents (except for the top node).  

Suppose there are a total of�  resources in the cloud 
environment. The resources can be denoted as � =
{��, … , �� }. All the resources are interconnected with each 
other so that they can transfer data among each other.The 
scheduling problem is to find an optimal mapping �  
between tasks and resources according to some optimization 
objective. As mentioned before, cost is a common objective 
that is more concerned by user; makespan is another 
objective that is critical for scheduling.  
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Figure 1.  A workflow example with 8 tasks. 

In the following, we formulate several optimization 
objectives. Let � ������������(� ) denote the makespan of 
the workflow with respect to the mapping � : 

� ������������(� ) = �����ℎ ���� �� �ℎ� ���� ����− 

����� ���� �� �ℎ� ����� ����

The makespan of a workflow is the time duration from the 
beginning of the first task till the end of the last task. Since a 
workflow consists of interdependent tasks, both execution 
time and transfer time need to be considered.  

Next, let ��������(��)and ���������(��)be the execution 
and transfer costs of resource �� , respectively.  
���������(��)denotes the total cost of resource ��: 

���������(��) = ��������(��) + ���������(��) 
1 ≤ �≤ � .                     (2) 

Let ���������(� )be the total cost of the workflow w.r.t the 
mapping � : 

���������(� ) = ∑ ���������(��)�
��� .             (3) 

For the objective of minimizingthe cost while balancing 
the load [14],the fitness function is given as: 

���������������� = ���(���������(��)), 1 ≤ �≤ � . (4) 

The objective is to minimize ������� ���������. The reason 
for not using the total cost of all the resources is to prevent 
from mapping all the tasks to a single, least-cost resource.  

For the objective of optimizing makespan (such as the 
work by Zhang et al [13]), the fitness function can be defined 
as: 

���������������� = �������������(� ).           (5) 

The objective is to minimize ������� ���������.  
In this paper we propose an objective of minimizing the 

weighted sum of total cost and makespan; the fitness function 
can then be defined as: 

���������������� =   � ���������(� ) + 

(1 − �) � ������������(� ),    0 ≤ � < 1,(6) 

where� is the weight given to thetotal cost and 1 − � is the 
weight given tomakespan. This fitness function can be easily 
tuned by changing the value � to satisfy the various QoS 
requirements including budget constraints. Again the 
objective is to minimize������� ���������.  

IV. PARTICLE SWARM OPTIMIZATION-BASED 
SCHEDULING ALGORITHMS 

This section presents the PSO method to approximate the 
optimal solutions specified by the fitness functions defined 
above. PSO is one of the latest evolutionary algorithms 
inspired by the social behavior of fish schooling or bird 
flocking [6]. Each particle corresponds to an individual bird 
or fish searching in a search (problem) space, and is referred 
to a candidate solution. The flock or swarm of particles is 
randomly generated initially [20]. Each particle has its own 
position in the space,with a fitness value corresponding to the 
position; it also has a velocity to determine the speed and 
direction by which is flies. PSO achieves an optimal solution 
by having a population of particles (candidate solutions), and 
moving these particles around in the search space according 
to each particle’svelocity and updated position.  

Particles in the search process update themselves by 
tracking two best-known positions: (1) The local best 
position is the individual’s best-known position in terms of 
the fitness value reached so far by the particle itself. (2) The 
global best position is the best position so far among all the 
particles in the entire population.  

A. Basic Notations 
Let the number of particles be � . Let ��� , ��� ,  

���and ��� be the position, velocity, best local and best global 
positions, respectively, of particle iat iteration � . The 
velocity and position of particle i are each updated according 
to equations(7) and(8), respectively; and the two best 
positions are updated according to(9) and (10) respectively: 

��� = ������+����������−������+ ����������−������ 

1 ≤ �≤ �,   (7) 

��� = �����+���1 ≤ �≤ �,                      (8) 

��� = ����(���,  �����)1 ≤ �≤ �,                (9) 

��� = ����(���, … , ���),                                      (10) 

where, �  is the inertial weight; �� , ��  are acceleration 
coefficients, and �� , ��  are random numbers in the range 
of[0,1]. At each iteration, the velocity is updated according 
to its current velocity and the local and global best positions. 
The position is updated based on the current position and the 
updated velocity. These ensure that the particles search 
around the local and global best positions and converge to a 
global best position in the limited iteration. 
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In the workflow scheduling problem, a particle represents 
a mapping between the resources and the tasks. The 
dimensionof a particle is the number of tasks in the 
workflow. For example, consider a problem of 8 tasks and 5 
resources. One possible particle for the mapping is illustrated 
in Fig. 2.  

 
Figure 2.  A sample particle (8 tasks on 5 resources). 

B. The PSO Algorithm 
The evaluation of each particle is performed by the 

fitness function, defined according to the optimization 
objective, as described in Section III.The high-level structure 
of a PSO algorithmis given in Table I, followed by a detailed 
description. 

First, the position and velocity of all the particles are 
randomly initialized. If the iteration stopping criterion is not 
met, the algorithm repeatedly does the following: for each 
particle, it first calculates its fitness value using one of the 
fitness functions given in (4-6), and then updates its local 
best positions using (9). Then, it calculates the global best 
position among all the particles using (10). It updates 
thevelocity and position of all the particles using (7) and (8). 
Finally, when the stopping criterion is met, the global best 
position is the optimal mapping. 

TABLE I.  THE PSO ALGORITHM 

1:   Initialize particles’ position and velocity randomly. 
2:   While stopping criterion is not satisfied do 
3:        For each particle do 
4:              Calculate its fitness value using the fitness function. 
5:              Update its local best position. 
6:        End For 
7:        Update the global best position. 
8:        For each particle do 
9:               Update its velocity and position. 
10:      End For 
11:  End While 
12:  Return the global best position. 

 
After computing the mapping using PSO, the scheduling 

algorithm dispatches the ready tasks into each of the 
resources. A ready task is defined to beone that 
hascompletely received the entire data transferred from all of 
its parent tasks.  

C. Bottleneck Reduction 
Next, we present a heuristics to further reduce the 

makespan, as illustrated in Table II and described below. 
Since all the ready tasks assigned to a specific resource are 
independent, it will speed up the workflow by scheduling first 
the “bottleneck” task; i.e., the task having most descendants. 
Thus, in Step 3 the ready tasks are sorted according to the 
number of descendants. If there is a tie, the one with a short 

execution time will be given a high priority to execute first; 
this is done in Step 5 where tasks are sorted according to the 
execution time. 

TABLE II.  IMPROVEMENT: BOTTLENECK REDUCTION 
ALGORITHM 

1: For each resource do 
2:   For all the ready tasks in the resourcedo 
3:     Sort tasks in descending order of the number ofdescendants. 
4:     For ready tasks having the same number of descendantsdo 
5:         Sort tasks in ascending order of execution time. 

V. PERFORMANCE EVALUATION AND COMPLEXITY 
ANALYSIS 

In this section, we first describe the four PSO algorithms 
and the cloud experiment setup. Next, the performance 
results are presented. Finally, the timecomplexity of four 
algorithms is analyzed. 

A. PSO Algorithms 
TheJSwarmpackage is extended for conducting the PSO 

experiments[21]. The number of iterations in the PSO 
algorithm is set to be 100. Four algorithms are evaluated, as 
summarized in Table III. 

TABLE III.  FOUR PSO ALGORITHMS 

Algorithm Objective Fitness 
Function Strength 

1 
[18] 

Minimize the maximal cost (4) Load balance 

2 Minimize the makespan (5) Low makespan 
3 

(Proposed) 
Minimize the weighted 

sum 
of total cost and makespan 

(6) Tunable 
 

4 
(Proposed) 

Minimize the weighted 
sum of total cost and 

makespan, with bottleneck 
reduction 

(6) Tunable, with 
Bottleneck-
reduction, 

minimal cost & 
min. makespan 

B. Cloud Experiment Setup 
CloudSim 3.0 is used to configure cloud environment and 

simulate the execution of workflow [22-23]. It is is a toolkit 
for modeling and simulation of cloud computing 
environments. A data center (shown in Fig. 3) consisting of 
one switch and four hosts each having two VM (Virtual 
Machines) is configured in CloudSim. Note that the ports of 
a given switch each havea different bandwidth. The 
allocation of VM to hosts uses the default FCFS algorithm in 
CloudSim. For each VM on the same host, the time-shared 
policy is used such that two VM can run concurrently. For 
each task on the same VM, the space-shared policy is used 
such that tasks in one VM are executed sequentially.  

The millions of instructions per second (MIPS) and 
execution cost of each VM is given in Table III; the data 
transfer cost between different VMs is shown in Table IV. 
The prices are by referring to the pricing policy of Amazon 
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EC2’s pricing policy. In addition, the execution cost of a task 
is in proportion to the task’s millions of instructions (MI) 
requirement and the MIPS of the VM. The data transfer cost 
is in proportion to the data size and the bandwidth between 
VMs where the data are transferred.  

 

 
Figure 3.  Experimental datacenter infrastructure. 

TABLE IV.  MIPS AND EXECUTION COST OF EACH VM 

VM MIPS Execution cost 
(cents/MI) 

0 1.011 0.03361 
1 1.004 0.03333 
2 1.013 0.03444 
3 1.000 0.03278 
4 0.990 0.03111 
5 1.043 0.03528 
6 1.023 0.03472 
7 0.998 0.03167 

TABLE V.  TRANSFER COST (CENTS/MB) BETWEEN EACH VM 

VM 0 1 2 3 4 5 6 7 
0 0 0.17 0. 20 0.20 0.21 0.21 0.18 0.18 
1 0.17 0 0.20 0.20 0.21 0.21 0.18 0.18 
2 0.20 0.20 0 0.17 0.22 0.22 0.19 0.19 
3 0.20 0.20 0.17 0 0.22 0.22 0.19 0.19 
4 0.21 0.21 0.22 0.22 0 0.17 0.20 0.20 
5 0.21 0.21 0.22 0.22 0.17 0 0.20 0.20 
6 0.18 0.18 0.19 0.19 0.20 0.20 0 0.17 
7 0.18 0.18 0.19 0.19 0.20 0.20 0.17 0 

 
The workflow with 96 tasks is used in experiment (Fig. 

4). Each task has its own MI; data transfers in megabyte 
(MB) among tasks are also specified. 
 

 
Figure 4.  Experimental workflow (96 tasks). 

C. Experimental Results 
This section describes the results. All the results are the 

average of 30 independent executions. �  = 0.5 for 
Algorithms 3 and 4 unless otherwise specified. Except for 
Section 1), the number of particles = 500 is used. 

 
1) The Effect of the Number of Particles 

The number of particles may influence the performance 
by a varyingdegreedepending on the problem being 
optimized [7]. In a cloud environment, the total number of 
tasks to be executed is usually large; i.e., the particle 
dimension in the PSO is large. Existing results use a small 
number of particles: 25 (for5 tasks [14]) and 30 (for 50-300 
tasks [15]). We believe that using a larger number of 
particles is more desired when there are a large number 
oftasks(96 tasks in our experiments), so we conduct some 
experiments to investigatethiseffect.  

Fig. 5 shows the cost of Algorithms 1 and 4, and Fig. 6 
the makespan of Algorithms 2 and 4. It is clear that the 
number of particles affect the optimization results, especially 
when the particle number is small (smaller than 200). When 
the particle number increases beyond 500, the effect 
gradually diminishes.  

Using larger number of particles generally improves 
optimization results, but also increases the time complexity 
of the PSO algorithm (see Section V.D for complexity 
analysis), we therefore choose a compromise and use 500 for 
the rest of the experiments. 
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Figure 5.  Cost vs. the number of particles. 

 
Figure 6.  Makespan vs. the number of particles. 

2) The Cost Performance 
We vary the tasks’ MI by multiplying different 

proportion values.Fig. 7 shows the total cost of the four 
algorithms. The cost of Algorithms 3 and 4 are lower than 
Algorithms 1 and 2, while the cost of Algorithm 2 is the 
highest. This is reasonable since Algorithm 1 minimizes the 
maximalof the individual costsrather than the total cost (to 
prevent all the tasks executing on a single resource), while 
Algorithm 2 minimizes the makespan. Algorithms 3 and 4 
aim to minimize the sum of total cost and makespan, both 
achieves the lowest cost.The Bottleneck reduction in 
Algorithm 4 does not change the mapping and therefore does 
not affect the cost.  

The makespan of the four algorithms is shown in Fig. 8. 
It is clear, and with obvious reason, that Algorithms 1 and 2 
have the highest and the lowest makespan, respectively. Note 
that Algorithm 4 attains a makespan that is very close to 
Algorithm 2, and is even lower than Algorithm 2 with MI 
proportion = 1.8. This demonstrates that Algorithm 4 has 
achieved concurrently both minimal total cost and minimal 
makespan. 

 
Figure 7.  Cost vs. MI (Millions of Instructions). 

 
Figure 8.  Makespan vs. MI (Millions of Instructions). 

3) The Load Balance Performance 
Fig. 9 shows the average and the sample standard 

deviation (SSD) of the number of tasks per VM. Note that 
since there are 96 tasks and 8 resources (VM), the average 
number of tasks per VM is 12. The smaller the SSD, the 
more balanced the load distribution. Observed that Algorithm 
1 has achieved the most balanced load. Algorithms 3 and 4 
have slightly higher SD. 

To achieve a tunable PSO algorithm with excellent load 
balance, the following (the fourth) fitness function may be 
defined: 

���������������� =   � � ��(���������(��))  + 

(1 − �) � ������������(� ),   0 ≤ � < 1, 1 ≤ �≤ � , (11) 
whichis to minimize the weighted sum of one maximum 
resource cost (like Algorithm 1) and makespan (like 
Algorithm 2). In other words, this fitness function simply 
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combines equations (5) and (6) with weighted values. We 
namethe algorithm using fitness function (11) as Algorithm 
5, and the one using fitness function (11) with bottleneck 
reduction as Algorithm 6. Their load balance performance is 
also shown in Figure 9.  

 
Figure 9.  Load balance: Average and SSD vs. MI (Millions of 

Instructions). 

 
It is clear that, using the new tunable fitness function, 

Algorithms5 and 6achieve the most balanced load.This is 
because fitness function (11) used in Algorithms 5 and 6 
considers maximum resource cost instead of total cost as in 
fitness function (6) used in Algorithm 3 and 4, the load of 
each resource is thus more balanced. Note that the costs of 
Algorithms 5 and 6 are between Algorithm 1 and 2, which 
are higher than Algorithms 3 and 4.The makespan of 
Algorithms 5 and 6 are also higher than Algorithm 3 and 4, 
but lower than Algorithm 1. 

4) Tuning theWeight Value (�) 
One chief advantage of the proposed Algorithms 3 and 

4,is that the weight value (�) can be tuned. Fig. 10 shows the 
cost and makespan results while varying �. As �,the weight 
placed on optimizingthe cost, increases, the cost decreases 
while the makespan increases. Thus, �may be tuned to 
achieve a degree of compromise between cost and makespan 
according to different QoS requirements. (Note that the point 
of intersection may move when the scale of the two vertical 
axis change.) 

 
Figure 10.  Cost, Makespan vs. weight (�) values of Algorithm 4.  

D. Complexity Analysis 
While Algorithms 3 and 4 perform better than 

Algorithms 1 and 2 in terms of combined cost and makespan, 
as shown above, we analyze and compare the time 
complexity of the four algorithms. Let N be the number of 
particles, Lbe the number of iterations, nbe the number of 
tasks, and ebe the number of edges in the DAG (i.e., the 
number of data transfers needed among tasks) in the PSO 
algorithm. The time complexity of the four algorithms is 
summarized in Table VI. Clearly the four algorithms have 
comparable complexities. Algorithm 4, which improves over 
Algorithm 3, does not need a larger time complexity. 

TABLE VI.  TIMECOMPLEXITYANALYSIS 

Algorithm 1 
[18] 

2 3 
(Proposed) 

4 
(Proposed) 

Fitness 
function 

O (n2) O (e) ≤ 
O (n2) 

O (n2 + e) 
= O (n2) 

O (n2 + e) 
= O (n2) 

For N 
particles 

O (Nn2) O (Ne) ≤ 
O (Nn2) 

O (Nn2) O (Nn2) 

For L 
iterations 

O(LNn2) O(LNe)≤ 
O (LNn2) 

O (LNn2) O (LNn2) 

Bottleneck 
reduction 

N.A. N.A. N.A. O(LNn2+nlogn) 
= O (LNn2) 

VI. CONCLUSIONS AND FUTURE WORK 
Most of the existing works using PSO for workflow 

scheduling in the cloud environment use a single, fixed 
fitness function. In this work a tunable fitness function has 
been proposed, which may give different weights to cost 
minimization and to makespan minimization. Furthermore, 
as existing works carry out experiments mostly using a small 
number of particles (25-30), we investigated the effect of the 
number of particles in PSO-based algorithms, and chose a 
suitable large number (500) in the experiments. With an 
additional heuristics that deals with bottleneck tasks, the 
proposed PSO-based algorithm has achieved both minimal 
cost and minimal makespan comparing with two existing 
algorithms. A similar tunable PSO-based algorithm has also 
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been proposed that achieved the best load-balance.Future 
work may include exploring discrete PSO, experimenting the 
proposed algorithm on real-life cloud environments, and 
applying the idea of tunable objective functions on other soft 
computing and distributed computing models. 
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