
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

365

Harmony Search Algorithm for Curriculum-Based
Course Timetabling Problem

Juliana Wahid
School of Computing

Universiti Utara Malaysia
Kedah, Malaysia

w.juliana@uum.edu.my

Naimah Mohd Hussin
Faculty of Computer Science and Mathematics

Universiti Teknologi MARA
Perlis, Malaysia

naimahmh@perlis.uitm.edu.my

Abstract— In this paper, harmony search algorithm is applied to
curriculum-based course timetabling. The implementation,
specifically the process of improvisation consists of memory
consideration, random consideration and pitch adjustment. In
memory consideration, the value of the course number for new
solution was selected from all other course number located in the
same column of the Harmony Memory. This research used the
highest occurrence of the course number to be scheduled in a new
harmony. The remaining courses that have not been scheduled
by memory consideration will go through random consideration,
i.e. will select any feasible location available to be scheduled in
the new harmony solution. Each course scheduled out of memory
consideration is examined as to whether it should be pitch
adjusted with probability of eight procedures. However, the
algorithm produced results that were not comparatively better
than those previously known as best solution. With proper
modification in terms of the approach in this algorithm would
make the algorithm perform better on curriculum-based course
timetabling.

Keywords-Harmony Search Algorithm; Curriculum-based
Course Timetabling;

I. INTRODUCTION
The university course timetabling is the administrative

tasks that allocate the set of courses offered by the university
to particular rooms and time slots. The allocating process
needs to satisfy several constraints so that timetable can
actually be carried out (feasible). There are two categories of
constraints in timetabling such as hard and soft constraints [1].
Hard constraints or constraints which may not be broken
consist of matters that need rigidly be fulfilled in the timetable
such as courses must be allocated into different time slots in
order to avoid students and staffs clashes. While soft
constraints are matters reflecting the preferences and
teaching/learning comfort expectations of the students and
staffs which are not necessarily essential. Some examples of
soft constraints are such as avoiding students having to attend
three or more courses in successive time slots, and stopping
students from having only one course in any day.

The university course timetabling as described in
International Timetabling Competition website

(www.cs.qub.ac.uk/itc2007/) fall into two versions. The first
version is the Post Enrolment, which the timetable is
constructed based on student enrolments i.e. after students
have selected which lectures they wish to attend. The second
version is the curriculum-based course timetabling (CB-CTT).
This version will construct the timetable according to curricula
published by the university.

University course timetabling problem (UCTP) that fall
into group of non deterministic polynomial (NP) problem can
be formulated as a combinatorial optimization problem (COP)
[2-3], in which the larger the number of lectures to be
scheduled and the diversity of constraints need to be
considered, the harder the problem to be solved.

The works towards solving course timetabling problems
have started in year 1960’s, whereby the problem is modeled
as a graph coloring approach [4]. Since then, various methods
and approaches have been explored and proposed to solve the
problems. In year 1970’s, Barham and Westwood [5] have
attempted to use heuristic methods. Moving forward to year
1980’s, Mulvey [6] solved the university course-scheduling
problem using network flows while Werra and Hertz [7] have
tested tabu search methods. As in 1990’s, the works in this
problems are more unleashed where variety of methods are
proposed. Yu [8] used artificial neural networks to solve the
timetabling problem. In the other hand, Downsland [9] and
Dige et al. [10] solved the timetabling problem by simulated
annealing, while Deris et al. [11] exhibited constraint-based
reasoning method in a case study of university timetabling
problem. The active timetable research in this era also was
contributed by the First International Conference on the
Practice and Theory of Automated Timetabling (PATAT) held
in 1995. In this era also, the evolutionary algorithms [12] in
timetabling problem are proposed. In the new millennium era,
the works continue. Constraint based programming [13],
hyper heuristic methods [14-15], and metaheuristic methods
[16] has been introduced and become an interesting approach
for solving timetabling problems.

Even though enormous effort expended over the last forty
years to discover efficient methods and approaches for solving

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

366

timetabling problems, these problems are nevertheless still the
focus of intense research [17]. For course timetabling
problems, the solutions algorithms are usually problem-
specific; that is, no general solution can solve different
problem instances. Even though the problem has been widely
researched, there is still no definitive solution approach that is
able to provide excellent solutions across the broad spectrum
of problem instances. This is parallel with the No Free Lunch
theorem [18] that says if we cannot make any prior
assumptions about the optimization problem we are trying to
solve, no strategy can be expected to perform better than any
other. Indeed, Gomes & Williams [19] stated that NP-hard
problems are inflexible, which means that there does not exist
an efficient algorithm that is ensured to find an optimal
solution for this kind of problems.

This study has interest on examining specific algorithm
i.e. harmony search algorithm (HSA). There are several
components that can be improved in finding solution to
university course timetabling problem (UCTP). HSA was
successfully adapted to UCTP by Al-Betar, Khader, & Abdul
Gani [20]. In their work, Al-Betar, et al. [20] described the
adaptation of HSA for UCTP using five steps of HSA such as
1: Initialize HSA parameters and UCTP parameters, 2:
Initialize Harmony Memory (HM) with random feasible
timetables based on Harmony Memory Size (HMS)
Parameter, 3: Improvise new harmony solution, 4: Update
harmony memory, and 5: Stop Criteria. The HSA can find
near optimal solutions for UCTP and produces better results
than several others in the previous literature.

In their later work [21], the modified harmony search
algorithm (MHSA) was produced to enhance the basic HSA
for UCTP whereby the basic memory consideration of basic
HSA is changed to modified memory consideration, and pitch
adjustment with random walk as an acceptance rule of basic
HSA is changed to pitch adjustment with side walk and first
improvement acceptance rule.

In the same year, works on HSA for UCTP focused on
pitch adjustment operator produced whereby eight pitch
adjustment procedures were proposed to enhance the solution
quality of the UCTP [22].

A year before the producing of MHSA, the hybridization
of HSA with hill climbing optimiser (HCO) and particle
swarm optimization (PSO) was produced by Al-Betar &
Khader [23]. The role of HCO in the hybridization is as new
operator (located at step 3) to improve the quality of new
harmony vector relative to the number of improvisations (NI)
in each run with probability of hill climbing rate (HCR). The
PSO was also located at step 3, used to modify the memory
consideration operator to imitate the best harmony among the
HM vector to construct new harmony.

As according to Al-Betar & Khader [23], the HSA
exploits the advantages of population-based methods by
identifying the potential regions in the search space using the
memory consideration and random consideration operator. It
also utilizes the advantages of local search-based methods by

fine tuning the search space region using the pitch adjustment
operators. So far in the literature, the works on HSA for UCTP
carried out mostly focussed on the first version of UCTP, i.e.
the Post Enrolment. None so far focussed on the curriculum-
based course timetabling.

From this point of view, this study will explore the
implementation of harmony search algorithm (HSA) into CB-
CTT.

This paper is organized as follow: section 2 describes
literature review on the curriculum-based course university
timetabling problem and the details of the harmony search
algorithm, section 3 presents the methodology used in the
paper followed by section 4 that explains the details of
implementation of harmony search algorithm for CB-CTT.
Section 5 discusses the experimental results and compares
them with the best known solution in the literature. The
possible future approach for improvement also discussed in this
section. Section 6 shows some conclusions.

II. LITERATURE REVIEW

A. Curriculum-based course timetabling (CB-CTT)
The curriculum-based course timetabling (CB-CTT)

problem is an alternative of an university timetabling problem
which creating a weekly timetable by allocating lectures for
several university courses to a certain number of rooms and
time periods based on curricula. The available constraints for
this variant of university timetabling problem are solely based
on the definition of the curricula [24]. Opposite to post-
enrolment based course timetabling problems in which
students specifically register for courses they wish to attend.

The curriculum-based course timetabling problem has
been selected as one of the competition tracks of the
International Timetabling Competition 2007 (ITC2007). This
study used problem definition presented in Bonutti, De Cesco,
Di Gaspero, & Schaerf [25] which extended from technical
description in the ITC2007 web site and the corresponding
technical report from Di Gaspero et al. [26]. The CB-CTT
problem definition consists of the following basic entities:

Days – number of teaching days in the week (typically 5 or 6).

Timeslots - Each day is split into a fixed number of timeslots,
which is equal for all days.

Periods - a pair composed of a day and a timeslot. The total
number of scheduling periods is the product of the days times
the day timeslots.

Courses and Teachers - Each course consists of a fixed
number of lectures to be scheduled in distinct periods, it is
attended by a given number of students, and is taught by a
teacher. For each course there is a minimum number of days
that the lectures of the course should be spread in, moreover
there are some periods in which the course cannot be
scheduled.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

367

Rooms - Each room has a capacity, expressed in terms of
number of available seats, and a location expressed as an
integer value representing a separate building. Some rooms
may not be suitable for some courses (because they miss some
equipment).

Curricula - A curriculum is a group of courses such that any
pair of courses in the group have students in common. Based
on curricula, we have the conflicts between courses and other
soft constraints.

The CB-CTT problem consists in scheduling lectures of a
set of courses into a weekly timetable, where each lecture of a
course must be assigned a period and a room in accordance
with a given set of constraints. A feasible timetable is one in
which all lectures have been scheduled at a timeslot and a
room, so that the hard constraints such as follows are satisfied:

H1 - Lectures: Each lecture of a course must be scheduled in
a distinct period and a room.

H2 - Room occupancy: Any two lectures cannot be assigned
in the same period and the same room.

H3 - Conflicts: Lectures of courses in the same curriculum or
taught by the same teacher cannot be scheduled in the same
period, i.e., no period can have an overlapping of students nor
teachers.

H4 - Availability: If the teacher of a course is not available at
a given period, then no lectures of the course can be assigned
to that period.

In addition, a feasible timetable satisfying the four hard
constraints incurs a penalty cost for the violations of the four
soft constraints such as follows:

S1 - Room capacity: For each lecture, the number of students
attending the course should not be greater than the capacity of
the room hosting the lecture.

S2 - Room stability: All lectures of a course should be
scheduled in the same room. If this is impossible, the number
of occupied rooms should be as few as possible.

S3 - Minimum working days: The lectures of a course should
be spread into the given minimum number of days.

S4 - Curriculum compactness: For a given curriculum, a
violation is counted if there is one lecture not adjacent to any
other lecture belonging to the same curriculum within the
same day.

Then, the objective of the CB-CTT problem is to
minimize the number of soft constraint violations in a feasible
solution.

B. Harmony search algorithm (HSA)
The harmony search algorithm (HSA) is a new

metaheuristic algorithm that impersonates the musical
improvisation process in which a group of musicians
improvise their instruments’ pitch by searching for a perfect
state of harmony according to audio-aesthetic standard [27].

The equivalent terms between musical scenario and
optimization problems that obtained from Al-Betar & Khader
[21] are as the following:

 Improvisation ↔ Generation or construction
 Harmony ↔ Solution vector
 Musician ↔ Decision variable
 Pitch ↔ Value
 Pitch range ↔ Value range
 Audio-aesthetic standard ↔ Objective function
 Practice ↔ Iteration
 Pleasing harmony ↔ (Near-) optimal solution

The HSA consists of several steps such as 1) problem
formulation, 2) algorithm parameter setting, 3) random tuning
for memory initialization, 4) harmony improvisation (memory
consideration, random consideration, and pitch adjustment), 5)
memory update, 6) performing termination, and 7) cadenza
[28]. Figure 1 shows the pseudo-code of the HSA with five
main steps in which STEP1 consists of problem formulation
and algorithm parameter setting, STEP2 consists of random
tuning for memory initialization, STEP3 consists of harmony
improvisation (memory consideration, random consideration,
and pitch adjustment), STEP4 consists of memory update and
STEP5 consists of performing termination and cadenza. The
details of each step will further discussed in section 4.

Fig. 1. Pseudo Code of Harmony Search Algorithm Source: [21]

III. METHODOLOGY
This section list the steps used to achieve the objective in

this study such as follows:

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

368

A. Initial Phase
This phase concentrates on studying and understanding

the HSA and CB-CTT from literature that can be found in
section 2.

B. Preprocessing Phase
This phase focuses on understanding the original data file

and transferring them into related matrixes, such as conflict
matrix that represents a conflict between courses, where
Lectures of courses in the same curriculum or taught by the
same teacher must be all scheduled in different periods.

C. Construction Phase
This phase focuses on finding feasible initial solutions

that satisfy all hard constraints related to each data instances.

D. Improvement Phase
This phase aims to improve solutions generated from the

construction phase, where the HSA are employed.
The details of step ii, iii and iv are covered in the next section.

E. Analysis Phase
This phase evaluates the quality of the solutions obtained

from the improvement phase against the other methods in the
literature which can be seen in section 5.

IV. THE HARMONY SEARCH ALGORITHM FOR CB-CTT
This section describes details of steps as shown earlier in

Figure 1in implementing HSA into CB-CTT as follows:

A. CB-CTT formulation and HSA parameter setting
The problem formulation of CB-CTT is based on the data

instances provided by ITC2007 available on
http://tabu.diegm.uniud.it/ctt. The details of the data instances
are describes in Table 1.

TABLE 1. Description of CB-CTT Instances Source:[25]

The problem formulation of CB-CTT was to minimize the
cost of soft constraints such as room capacity, room stability,
minimum working days and curriculum compactness.The

timetable solution for CB-CTT in HSA is represented by a
vector of courses x = (x1, x2, . . . , xN), each lecture for each
course must be scheduled in a feasible location. For example,
in the first data problem instances established by ITC2007, the
number of courses C = 30 which have number of lectures that
sum up to total lectures L = 160, the number of rooms R = 6,
the number of period per day P = 6 and the number of days D
= 5. The possible timeslots of each lectures that represent by
courses is within the range between 0 to 179 (R X P X D = 6
X 6 X 5=180). As shown in Figure 2, first course denotes by 0
located at first room in period 0, 1, 3 and 4 in Day 0, and
period 0 and 2 in Day 1. These locations equivalent to timeslot
0, 1, 3, 4, 6, and 8. Solution with value -1 shows that the
timeslot is empty.

Fig. 2. Structure of Timeslots against Solution

As for the preprocessing phase, the following data
structures are used to build a CB-CTT solution:

- Course Correlation matrix: is a matrix with size C x
C where the element > 0 if courses in the same
curriculum and if more then one course tought by
same teacher or 0 otherwise.

- Course period matrix: is a binary matrix with size C x
P where the element contains either 1 if and only if
course C not available in period P or 0 otherwise.

- Course room matrix: is a binary matrix with size C x
R where the element contains either 1 if and only if
course C and room R is compatible with both aspects
of size and features or 0 otherwise.

- Courseperiodavail matrix C x (P xR) contains either
1 if and only if course C available in period P in
room R or 0 otherwise.

The following parameters of the HSA that identified by
Geem [28] which required to solve the optimization problem
are also specified in this step:

 Harmony memory size (HMS) - number of solution
vectors concurrently handled.

 Harmony memory considering rate (HMCR) – (0 ≤
HMCR ≤ 1) where HSA picks one value randomly
from memory.

 Pitch adjusting rate (PAR) - (0 ≤ PAR ≤ 1) is the rate
where HSA fine-tunes the value which was originally
picked from memory.

 Maximum improvisation (MI) - number of iterations
or stopping criterion.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

369

The harmony memory (HM) is a memory location where
all the solution vectors (sets of decision variables) and
corresponding objective function values are stored. The
function values are used to evaluate the quality of solution
vectors. In CB-CTT, the HM consists of sets of timetable
solution and corresponding of costs of soft constraints i.e.
room capacity, room stability, minimum working days and
curriculum compactness. As surveyed by Geem [29], HMS of
value range from 30 to 100 was frequently used in literature.

The HSA parameter setting used in this study are as
follows:

 Harmony memory size (HMS) - 50
 Harmony memory considering rate (HMCR) – 0.9
 Pitch adjusting rate (PAR) – 1.0, with multi pitch

with eight procedures [22] such as follows:
o Move-timeslot: 0< U(0 ,1) ≤ 0.10xPAR
o Swap-timeslot: 0.10xPAR<U(0,1)≤ 0.20xPAR
o move-location: 0.20xPAR<U(0,1)≤ 0.30xPAR
o swap-location:0.30xPAR<U(0,1) ≤ 0.40xPAR
o exchange-location:0.40xPAR<U(0,1)≤

0.50xPAR
o swap-distinct-timeslots : 0.50xPAR< U(0 ,1) ≤

0.60xPAR
o move-room : 0.60xPAR< U(0 ,1) ≤ 0.70xPAR
o Swap-room : 0.70xPAR< U(0 ,1) ≤ 0.80xPAR
o do nothing : 0.80xPAR< U(0 ,1) ≤ 1

 Maximum improvisation (MI) – first phase: 10,
Second phase: 50

B. Random tuning for memory initialization
In this step, the harmony memory (HM) matrix is filled

with as many randomly generated solution vectors as the
HMS. In the CB-CTT model, the randomly generated solution
vectors undergo a validation process to verify that they
feasible i.e. not violated the hard constraints (lectures,
conflicts, availability and room occupation).

This step constructs maximum feasible timetabling
solutions for CB-CTT as determined by HMS. HM is filled
with these solutions and sorted according to the minimum total
cost of soft constraints. The technique used to generate
random HM solutions is assigning the courses by using the
combination of graph heuristic that produced maximum
numbers of solutions proposed by Juliana & Naimah [30]
which combines saturation degree with largest degree. In this
technique, the course with the least available period and
largest number soft conflicting students is scheduled first.

C. Harmony improvisation (memory consideration, random
consideration, and pitch adjustment)

1) Memory consideration

The memory consideration selects feasible locations of
the courses to be scheduled in the new harmony solution, x_ =
(x1, x2, . . . , xN), from the solutions stored in HM with the
probability of HMCR. In memory consideration, the value of
the course number for new solution was selected from all

other course number located in the same column of the HM.
This research used the highest occurrence of the course
number to be scheduled in a new harmony with probability of
HMCR. In certain situations, if there are same numbers of
highest occurrence for any course number, the least available
period and highest conflicts for that course were used to
choose between the course numbers. If the operators cannot
find a feasible timetable (this happens in some medium and
large data instances), the algorithm initiates a neighborhood
search to find feasible timetable, such as find an empty
timeslot for unassigned course number and swapping between
course numbers.

2) Random consideration
The remaining courses that have not been scheduled by

memory consideration will select any feasible location
available to be scheduled in the new harmony solution with
probability (1-HMCR).

3) Pitch adjustment
In CB-CTT the pitch adjustment operator works similar to

neighborhood structures in local search-based methods into
eight procedures [22] as follows:

a) The pitch adjustment move-timeslot. An event that
meets the probability of 10%×PAR is randomly
moved to any feasible timeslot where the room is not
changed.

b) The pitch adjustment Swap-timeslot. An event that
meets the probability between 10%×PAR and
20%×PAR is swapped with the timeslot of another
event, while the rooms of both events are not
changed.

c) The pitch adjustment move-location. An event that
meets the probability between 20%×PAR and
30%×PAR is randomly moved to any free feasible
location in the new harmony solution.

d) The pitch adjustment swap-location. An event that
meets the probability between 30%×PAR and
40%×PAR is randomly swapped with another event
while the feasibility is maintained.

e) The pitch adjustment exchange-location. An event
that meets the probability between 40%×PAR and
50%×PAR is randomly exchanged with another two
events while the feasibility is maintained.

f) The pitch adjustment swap-distinct-timeslots. An
event that meets the probability between 50%×PAR
and 60%×PAR is adjusted as follows: (1) select all
the events that have the same timeslot as first event.
(2) select a timeslot in random . (3) simply swap all
the events in timeslot with all the events in other
timeslot without changing the rooms.

g) The pitch adjustment move-room. An event that
meets the probability between 60%×PAR and

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

370

70%×PAR is moved to any free feasible room while
the timeslot is not changed.

h) The pitch adjustment Swap-room. An event that
meets the probability between 70%×PAR and
80%×PAR swaps its room with a room of another
event in the same timeslot while reserving the
feasibility.

Each course scheduled out of memory consideration is
examined as to whether it should be pitch adjusted with
probability by the above eight procedures.

4) Repair process
Due to large size of data instances, some courses may not

able to find feasible locations in the new harmony. This extra
step needs to be carried out to ensure all courses are scheduled
in the new harmony solutions. The repair process used here is
based on a one-level backtracking process by Al-Betar &
Khader [21] with some modification such as follows:

a) Select an unscheduled course.
b) Find all feasible locations for the unscheduled course

which is currently occupied by other courses in the
new harmony solution.

c) Delete the course that held the feasible location and
add it to the unscheduled list.

d) Schedule the unscheduled course to new harmony
solution in the feasible location and remove it from
the unscheduled list.

The above steps of repair process are carried out in
iterative manner, however if the predefined iterations cannot
find a complete feasible timetable, the improvisation process
of new harmony is restarted with a new random seed and
discarded the current new solution.

D. Memory update
If the new harmony vector, x_ = (x1, x2, . . . , xN) , is

better than the worst harmony stored in HM in terms of the
objective function value, the new harmony vector is included
to the HM, and the worst harmony vector is excluded from the
HM.

E. Performing termination
Steps 4.3 and 4.4 of HSA are repeated until the number of

maximum improvisation (MI) is met. For the purpose of this
study two cycles of iterations, i.e. 10 and 50, were used to
observe whether the solutions are improving or not.

V. RESULTS AND DISCUSSIONS
In this section, the performance of HSA for solving the

CB-CTT problem was evaluated using 21 data instances
generated in ITC-2007. The proposed method is coded using
C++ in Microsoft Visual 2008 under Windows Vista on an
Intel Machine with Core TM and a 2.16GHz processor and
1GB RAM. Table 2 shows the experimental results of HSA
algorithm for 10 iterations and 50 iterations together with the
best known results solution. As there are several instances that

not improving from 10 iterations to 50 iterations such as
comp05, comp07, and comp12, the higher iterations e.g. 100,
150, and so on were not carried out yet to enhance the
proposed method. The time complexity of each iteration also
not yet described as this paper shows only low level number of
iterations.

So far, the result demonstrates that HSA could be tailored
to solve CB-CTT problems. However, our approach is still not
able to achieve results comparable with the best known
solution. An improvement (which is currently ongoing, with
optimism) is required, in order to enhance the performance of
the proposed method to produce desired outcomes better than
those currently in use. There several issues that needed to be
considered in enhancing the approach such as in the memory
consideration, perhaps the used of smallest occurrence for
course number can be applied. Another issue could be the
process of repairing after improvisation process. A method to
ensure all new solutions after improvisation process is feasible
without to restart with a new random seed also be needed.

 The method used in this study provide alternative way of
solving curriculum-based course timetabling, as this type of
data instance not yet focused by other researcher that involved
in this HSA.

TABLE 2. Experimental Result of HSA for CB-CTT

VI. CONCLUSIONS
This paper presented the harmony search algorithm for

solving the CB-CTT problems. Results from the experiments
have shown that the algorithm is capable of solving
timetabling problems. Although the results produced by the
algorithm in this study are presently not comparatively better
than those already reported in the literature, there are rooms
for improvement. Further works need to be considered to
improve the HSA performance.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.55 e-ISSN: 2251-7545

371

ACKNOWLEDGMENT
This study was funded by Ministry of Higher Education

of Malaysia.

REFERENCES
[1] E. K. Burke, et al., "Automated university timetabling: The state of the

art. ," The Computer Journal, 40(9), 565–571., 1997.
[2] A. Colorni, et al., "Heuristics from nature for hard combinatorial

optimization problems," International Transactions in Operational
Research, 3(1): 1-21, January 1996, 1996.

[3] C. Blum and A. Roli, "Metaheuristics in combinatorial
optimization:Overview and conceptual comparison," ACM Computing
Surveys, 35(3):268-308, 2003, 2003.

[4] D. Wood, "A technique for colouring a graph applicable to large scale
timetabling problems," The Computer Journal 12, 317–319 (1969),
1969.

[5] A. M. Barham and J. B. Westwood, "A Simple Heuristic to Facilitate
Course Timetabling," The Journal of the Operational Research Society,
vol. 29, pp. 1055-1060, 1978.

[6] J. M. Mulvey, "A classroom/time assignment model," European Journal
of Operational Research 9 (64) (1982) 64±70., 1982.

[7] D. d. Werra and A. Hertz, "Tabu search techniques: A tutorial and an
application to neural networks," OR Spectrum 11 (1989) 131±141.,
1989.

[8] T. L. Yu, "Time-table scheduling using neural network algorithms,"
IJCNN International Joint Conference on Neural Networks, 1990,
Page(s): 279 -284 vol.1., 1990.

[9] K. A. Dowsland, "A Timetabling Problem in Which Clashes are
Inevitable," The Journal of the Operational Research Society, vol. 41,
pp. 907-918, 1990.

[10] P. Dige, et al., "Timetabling by simulated annealing," Lecture Notes in
Economics and Mathematical Systems 396 (1993) 151±174., 1993.

[11] S. B. Deris, et al., "University Timetabling by Constraint-Based
Reasoning: A Case Study," The Journal of the Operational Research
Society, vol. 48, pp. 1178-1190, 1997.

[12] E. K. Burke, et al., "A Hybrid Genetic Algorithm for Highly
Constrained Timetabling Problems," Proceedings of the 6th
Intemational Conference on Genetic Algorithms pp 605-610, Morgan
Kaufinann, San Francisco, CA, USA, (ICGA’95, Pittsburgh, USA, 15th-
19th July 1995). 1995.

[13] A. M. Abbas and E. P. K. Tsung, "Constraint-based timetabling-a case
study," ACS/IEEE International Conference on Computer Systems and
Applications, 2001, Page(s): 67 -72., 2001.

[14] E. K. Burke, et al., "A graph-based hyper-heuristic for educational
timetabling problems," European Journal of Operational Research 176
(2007) 177–192, 2007.

[15] E. K. Burke, et al., "A Tabu-Search Hyperheuristic for Timetabling and
Rostering," Journal of Heuristics 9, 451-470 (2003), 2003.

[16] R. Lewis, "A survey of metaheuristic-based techniques for University
Timetabling problems," OR Spectrum 30, 167–190 (2008), 2008.

[17] R. J. Willemen, "School timetable construction algorithms and
complexity," PhD Thesis, Universiteitsdrukkerij Technische Universiteit
Eindhoven, The Netherlands, 2002.

[18] D. H. Wolpert and W. G. Macready, "No free lunch theorems for
optimization " Evolutionary Computation, IEEE Transactions on
Volume: 1 , Issue: 1 Digital Object Identifier: 10.1109/4235.585893
Publication Year: 1997 , Page(s): 67 - 82 1997.

[19] C. P. Gomes and R. Williams, "APPROXIMATION ALGORITHMS,"
in SEARCH METHODOLOGIES Introductory Tutorials in Optimization
and Decision Support Techniques, G. Kendall and E. K. Burke, Eds., ed:
Springer Science-i-Business Media, LLC, 2005, pp. 557-585.

[20] M. Al-Betar, et al., "A harmony search algorithm for university course
timetabling," in PATAT 2008, 2008.

[21] M. Al-Betar and A. T. Khader, "A harmony search algorithm for
university course timetabling," Annals of Operations Research, pp. 1-29,
2010.

[22] M. Al-Betar, et al., "A Harmony Search with Multi-pitch Adjusting Rate
for the University Course Timetabling," Recent Advances in Harmony

Search Algorithm, SCI 270, pp. 147–161. springerlink.com © Springer-
Verlag Berlin Heidelberg 2010, 2010.

[23] M. Al-Betar and A. T. Khader, "A hybrid harmony search for university
course timetabling," in Multidisciplinary International Conference on
Scheduling : Theory and Applications (MISTA 2009) 10-12 August
2009, Dublin, Ireland, 2009.

[24] M. Geiger, "Multi-criteria Curriculum-Based Course Timetabling—A
Comparison of a Weighted Sum and a Reference Point Based
Approach," in Evolutionary Multi-Criterion Optimization. vol. 5467, M.
Ehrgott, et al., Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 290-304.

[25] A. Bonutti, et al., "Benchmarking curriculum-based course timetabling:
formulations, data formats, instances, validation, visualization, and
results," Annals of Operations Research, pp. 1-12, 2010.

[26] L. Di Gaspero, et al., "The second international timetabling competition
(ITC-2007): Curriculum-based course timetabling (track 3) " (Technical
Report QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1). School of
Electronics, Electrical Engineering and Computer Science, Queens
University, Belfast (UK), August 2007. ITC-2007 site:
http://www.cs.qub.ac.uk/itc2007/.2007.

[27] Z. W. Geem, et al. (2001) A new heuristic optimization algorithm:
harmony search. . Simulation 76, 60–68 (2001). Available:
http://sim.sagepub.com/content/76/2/60.abstract

[28] Z. W. Geem, "State-of-the-Art in the Structure of Harmony Search
Algorithm," in Recent Advances In Harmony Search Algorithm. vol.
270, Z. Geem, Ed., ed: Springer Berlin / Heidelberg, 2010, pp. 1-10.

[29] Z. W. Geem, "Optimal cost design of water distribution networks using
harmony search.," Engineering Optimization 38, 259–280 (2006), 2006.

[30] W. Juliana and M. H. Naimah, "Constructing Population of Initial
Solutions for Curriculum-Based Course Timetabling Problem," in
International Conference on Innovation, Management and Technology
Research (ICIMTR2012), 21-22 May 2012, Melaka, Malaysia, 2012.

