
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

372

A Simulated Annealing Algorithm for Generating
Minimal Perfect Hash Functions

Ahmed El-Kishky
The University of Tulsa
Tulsa, Oklahoma State

ahmed-el-kishky@utulsa.edu

Stephen Macke

The University of Tulsa
Tulsa, Oklahoma State

stephen-macke@utulsa.edu

Roger Wainwright

The University of Tulsa
Tulsa, Oklahoma State

rogerw@utulsa.edu

Abstract—We developed minimal perfect hash functions for a
variety of datasets using the probabilistic process of simulated
annealing (SA). The SA solution structure is a tree representing
an annealed program (algorithm). This solution structure is
similar to the structure used in genetic programming. When
executed, the SA program produces multiple hash functions for
the given data set. An initial hash function called the distribution
function is generated. This function attempts to uniformly place
the keys into bins in preparation for a minimal perfect hash
function determined later. For each trial, and for every data set
of various size tested, our algorithm annealed a minimal perfect
hash function. Our algorithm is applied to datasets of strings
from the English language and to a list of URL's. Bloat control is
used to ensure a small fixed depth limit to our solution, to
simplify function complexity, and to ensure fast evaluation.
Experimental results show that our algorithm generates hash
functions that outperform both widely known non-minimal, non-
perfect hashing schemes as well as other recent algorithms from
the literature.

Keywords—Minimal Perfect Hash Functions; Differential
Evolution; Simulated Annealing; Genetic Programming;

I. INTRODUCTION
The worst case complexity of locating an item within an

array is O(n) where n is the number of items within the array.
This worst case complexity can be reduced to O(lg2(n)) if the
array is sorted and binary search is used to locate elements.
Ultimately, the desired search time is constant time, O(1) . A
perfect hash function (PHF) is a hash function that maintains
the injective property commonly known as “one-to-oneness”,
while a minimum perfect hash function (MPHF) is a perfect
hash function with the added restriction of surjection, “onto-
ness”. Such a function bijectively maps a static set D to a set
of integers associated with indices of a table. Static search sets
are common in many areas of computer science and software
applications. Some instances of static search sets are the set of
reserved words in compilers and interpreters, file-names on
read-only optical media, common English words (English
Dictionary), and indexed columns within databases [1]. Knuth
and others have asserted that the finding of perfect hash
functions is a computationally hard problem [1,2,3].

Simulated annealing (SA), first described by Kirkpatrick,

Gelatt, and Vecchi, is a meta-heuristic optimization technique
that derives its name from the process of annealing in
metallurgy[4]. Each iteration of simulated annealing modifies
the representation of a possible solution. This perturbed
solution is either accepted or rejected based on its overall
quality, and a “temperature" parameter. The algorithm
occasionally accepts worse solutions in an effort to avoid the
local extrema that ensnare most hill-climbing algorithms.

 Others have generated perfect hash functions using both
probabilistic and deterministic methods. Current methods of
generating MPHF involve generation of random graphs
[5,6,7]. These attempts, however, fail to incorporate patterns
in the data when searching the solution space. While these
methods show fast evaluation time, they do not fully leverage
the static nature of the keys to minimize evaluation time of the
resultant functions. Other methods often have super-linear
run-time [8]. The advantage our heuristic-based hill-climbing
approach has over these approaches is the methodology's use
of the static nature of the keys. Patterns and irregularities of
the data are taken into consideration, and the deviation from
the desired output is used as a guiding metric towards a
solution with no collisions.

Genetic programming is a technique developed by John
Koza. It is best described as the evolution-inspired process by
which a computer program is discovered that produces a
desired set of outcomes when presented with particular inputs
[9]. While the approach of genetic programming may seem
like a suitable technique for creating a MPHF, we
implemented both techniques and found that the simulated
annealing technique generates MPHF faster than genetic
programming. We believe this is because our tree-encoded
hash functions lack the optimal substructure required for
genetic programming. As such simulated annealing provides
comparable results to genetic programming without the
associated overheads, such as crossover or maintaining large
populations.

II. METHODOLOGY
The overall strategy to generate our hash functions may be
described as follows:

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

373

1. First transform arbitrary keys into unique integers
2. Use simulated annealing to generate a function which

hashes integer keys to bins
3. If we have few enough keys, then it is not too hard

computationally to find a MPHF which hashes each
key to a single slot

4. If we have many keys, then each bin will contain
many keys, and will require additional processing. In
this case we recurse to step 2, using the bins as the
“new’ dataset

The hash function may thus be represented as a tree-like
data structure, with auxiliary distribution functions generated
by simulated annealing at each node.

Given this overview, we will now describe in detail the
methodology in a “bottom-up" fashion. That is, we will first
describe the simulated annealing which takes place at each
node of the tree, and we will then describe the algorithm
which generates the tree itself.

A. Simulated Annealing
We used a tree structure to represent each auxiliary

function. Each non-terminal tree node contains a function
pointer to a binary operator, and each terminal contains an
operand (a constant or a function argument). The operators
used for the generated functions were selected from elementary
integer mathematical operators with emphasis on
computational simplicity, as shown in Table I.

Below is an example of a hash function generated by our

algorithm.

B. Bloat Control
Since hash functions should possess O(1) evaluation time,

we used complete binary trees of fixed depth to represent our
auxiliary functions. In our research, we never find need for a
tree depth greater than three (meaning three levels past the tree
root). This method of bloat control ensures O(1) evaluation
time, with 2depth

− 1 operator evaluations.

C. Perturbation Method
We represent each function with a complete binary tree

composed of 2depth

− 1 operators and 2depth terminal nodes. To
perturb a given solution, we generate a random integer

 (0,
2depth+1

− 1) referring to a particular node. If the node selected
is a terminal node, a random ephemeral constant or a randomly
chosen input argument is placed within the node. If the integer
falls within the 2depth

− 1 operator nodes, the subtree of the
node at the given point is replaced with a randomly generated
subtree.

D. Generation of Function Tree Structure
Table II reviews the terminology used in the section.

Step 1: Distribution: Generation of Uniform Hash Function
For large numbers of integer keys, it is too

computationally difficult (using our method of simulated
annealing) to find a function that immediately perfectly hashes
the keys. Thus, we first use the simulated annealing previously
described to uniformly distribute the keys amongst the set of
bins, B. The use of simulated annealing is justified since the
auxiliary function should hash any key to any of the b

 B
with equal probability, a property cannot be assumed for a
general algorithm which is unaware of the probability
distribution from which the keys are drawn. We choose the
number of bins, |B|, based on number of the target number of
keys for each bin, c, and the number of elements to be hashed,
n, from dataset D: |B| = n/c. Since the desired c outcome is
that each bin contains as close to c elements as possible, we
use the sum of the square errors (SSE) from this c to evaluate
these auxiliary functions. The smaller the SSE, the higher the
evaluation.

Evaluation Function
To evaluate the generated function, an array B is created.

The function fB is then evaluated indicating the number of
elements in each bin.

The evaluation is then calculated as the SSE of the number

of elements in each bin from the expected number c.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

374

A higher evaluation is assigned to functions that exhibit

lower square error. For each iteration the highest-evaluated
function is compared to the “running best” and if greater,
replaces the running best. This methodology is repeated for a
fixed number of iterations.

Step 2: Hash – Generation of Minimal Perfect Hash Functions
Following step 1, the algorithm has generated a collection

of bins. For each of these bins, it examines the number of
elements in the bin. If the number of elements is above some
pre-determined threshold, the algorithm recurses to step 1,
using the current bin as a “new” dataset. This is because it is
difficult to generate bijective mappings from n integers to the
set 1..n for large n, using our operators.

For each bin whose size is below the threshold, the
algorithm generates a perfect minimal hash function. The set
of leaf functions, fpi , will be stored in a new table T which
maps leaf bin i to fpi .

Step 2 follows the same methodology as Step 1, differing only
in the evaluation function. Consider only the bins B[i] where
|B[i]| ≤ thresh. For each of these bins, we create a new
temporary array X of size |B[i]|. The secondary hash function
attempts to perfectly and minimally hash the elements in each
bin in its associated array X. After first counting the number of
elements hashed into each index of X, a second pass calculates
the evaluation score by adding the number of elements in each
index choose 2, (x[index] choose 2), to the total evaluation.
This is a penalty since n elements hashed to the same index
indicates (n choose 2) collisions among them. Hence given the
index of each bin, B[i]:

Thus collisions are minimized since functions with more
collisions are given lower evaluations. As with the process in
step 1, for every iteration the current function is compared to
the “running best”, and, if it possesses a higher evaluation, it
replaces the running best.

Reuse of Previously Generated Functions
To save both time required to generate a new minimal

perfect hash function and space associated with storing a
multitude of minimal perfect hash functions, all previously
generated functions are evaluated on each bin prior to
generating a new hash function. If a candidate function

perfectly hashes a bin, we associate the function with the bin.
If no candidate function perfectly hashes the elements in that
bin, a new perfect hash function is generated.

A summary of the algorithm that generates the hash
function is given in Figure 1.

Function Evaluation
Given a key to hash, each non-leaf node applies its

distribution function to select an appropriate child node, and
each leaf node applies its MPHF to the key. The MPHF
pseudocode is given in Figure 2.

String Hashing
To generate functions that operate on character strings, we
first reduce the strings to unique integers. We then apply same
methodology described in Section 3.1 to these integers.

The annealed perfect hash functions, in addition to
maintaining the “perfect” property of no collisions, must be
able to differentiate permutations, commonly known within
the English language as anagrams, as distinct strings. Thus the
mapping of strings to integer values must map permutations of
strings to distinct integers.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

375

The Mapping Step
To map strings to integers, each individual character must

be assigned an integer value. In our algorithm, the ASCII
value of each character was used. Clearly naive methods such
as summation of the ASCII representation of each character
violate the previous requirement of differentiation between
permutations due to the commutativity of addition. The use of
a non-commutative operator such as subtraction also fails to
satisfy distinctiveness among permutations. For example:
2

−3−4 equals 2

−4−3.

In order to reduce a multi-character string to a single
integer, a higher-order function called a fold is used. This fold
will accept a function and a string as parameters, and
recursively combine the accumulated value with the value of
the next character of the string resulting in a new accumulated
value. This process is repeated until every character in the
string is taken into consideration. In the case of the function
addition, a fold would essentially be the summation of the
integer representation of each character. For this process to
work, the input function must distinctively identify
permutations of strings. This input function is generated
through our simulated annealing process. It is crucial that the
hash functions generated for strings are bivariate functions as
opposed to the univariate functions annealed for integer hash
functions. This is because the input function of the fold
requires two parameters. The bivariate property of the
functions generated accommodates the passing of an
accumulated value and the next character in the string
sequence. An example string hash function takes the following
form where f is a bivariate annealed function:

We use the operation, %, after each accumulation to

prevent the accumulated value from growing too large. This is
actually not necessary in our C++ implementation as
operations disregard any significant bits over 32 in standard
computer words. Using this method, strings are effectively
reduced to integers. It follows that the same simulated
annealing process for integer hashing can be used to generate
functions for string hashing.

The mapping step is equivalent to non-minimal perfect
hashing. The number of strings, n, to be minimally and
perfectly hashed will be uniquely associated with an integer
number. Hence the possible associated values a string can
assume is in the range [0..232

− 1] using a computer word.
Clearly no two strings can possess the same integer value,
which can be considered analogous to an index. Thus, the task
is reduced to minimal hashing with load factor (ratio of the
number of elements to slots in the hash table) which is n/232 in
the case of integers and n/264 in the case of long integers. A
graphical representation of the mapping step between strings
and integers is shown in Figure 3.

Proper Subsequence Mapping
Since hash functions require fast evaluation time, we may

leverage the static property of our data sets to eliminate the
requisite of examining every value in a multi-valued key (e.g
every character in a string). Using a simulated annealing or
greedy approach, we identify a uniquely identifying
subsequence of the keys within each bin for the unique integer
mapping step. The function is only applied to the unique
subsequence within the keys, reducing evaluation time.
Therefore, we associate with each bin a list of indices
referencing the shortest uniquely identifying subsequence
found.

Data Structure: Hash Tree
Hashing a particular key to a table index requires

navigating a data structure that we call the hash tree. The root
of the hash tree is a uniform function that returns the index of
one of its children. If the node is a leaf node, the node contains
a pointer to a perfect hash function associated with that leaf
which maps the key to its appropriate location. If the node is
not a leaf node, then it contains a function that will return an
index to a child node. The tree generated was always at most
depth three, with navigation through the tree based on the
image of a function when applied to a key. This provides for
essentially constant time traversal of the tree. A graphical
representation of our Hash Tree data structure is shown in
Figure 4.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

376

III. RESULTS AND DISCUSSION

Data Sets
To test the effectiveness of the SA methodology, our

algorithm was applied to sets of strings. These sets were
composed of, respectively, the 1000 most commonly used
words in the English language, 892 English words consisting
solely of anagrams, and a set of 58000 English words. In
addition a dataset of 5 million URLs of average size of 76
bytes were hashed, and 5 million randomly generated URLs of
average size of 50 bytes were hashed.

Testing Parameters
The simulated annealing parameters used in step 1 to

uniformly hash the elements into bins are shown in Table III.

bytes were hashed, and 5 million randomly generated URLs
of average size of 50 bytes were hashed.

Testing Parameters
The simulated annealing parameters used in step 1 to

uniformly hash the elements into bins are shown in Table 3.

Table III
PARAMETERS USED: STEP 1 DISTRIBUTION

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations 5000
Tree Depth 2
Expected Bin Size (c) 10
Accept/Reject Threshold (t) 15
Evaluation Function SSE

An initial uniform hash function was annealed by as-
signing higher evaluations to functions that produced bin
sizes with lower sum square error. Since the hash functions
associated with each bin are generated independently, Step 2
is highly parallelizable. Different SA conditions were set for
the second level hashing as detailed in Table 4.

Table IV
PARAMETERS USED: STEP 2 PERFECT HASH

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations Unti l P er f ect
Tree Depth var i able

Since the initial and secondary hash functions possess a
static depth limit of 2, the worst case number of operations
is 4 for each hash function for a total of 8. Therefore for
datasets of sizes larger than 28 = 256, the hash functions
perform better than the guaranteed logarithmic time for
sorted arrays and binary search.

All testing was conducted on a Thinkpad T400 Laptop
with an Intel 2 Duo 2.2GH z dual-core processor and 4GB
of DDR2

− 667 ram. The algorithm was implemented using
C++ and compiled using the gcc compiler.

Results
For string datasets, words from the English language

were sampled and URLs scraped from the web were used.
In every trial for every string dataset, minimal perfect
hash functions were found. When our resultant functions
(Hash Tree) were compared to the default comparisons of
binary search (BS) on a sorted array and the C++ standard
library’s unordered set (Hash Set) the following results were
obtained.

Table 5 shows results averaged over several trials for
successful search attempts (using i tems 2 D) for various

dataset sizes of URLs hashed. These results are also shown
in Figure 5. Table 6 shows results averaged over several
trials for unsuccessful search attempts (using i tems /2 D)
for various dataset sizes of URLs hashed. These results are
also shown in Figure 6. In our research, we have not found
any comparisons of MPHFs to standard implementations of
non-minimal, non-perfect hash sets. Webelieve this isavalid
comparison as it delineates the advantages of MPHFs over
the easier and ubiquitous standard hash implementations.

The results show our functions were of superior speed
to C++ standard library’s implementation of binary search
on a sorted array. This indicates our function evaluates in
time superior to the base case O(lg2(n)). Further assessment
shows that our algorithm performs comparable to C++ stan-
dard library’s unordered set, suggesting O(1) evaluation.

Figure 5 shows that we perform comparable to C++
standard library’s non-minimal, non-perfect hash set for
every data set tested. In the case of unsuccessful search
attempts (test for set membership with non-member data),
Figure 6 shows that we perform about three times faster than
C++ unordered set. This is because the perfect property
guarantees zero collisions: each slot contains exactly one
key. When comparing the key to the stored key within
the table, we may short-circuit at the first mismatch of
characters.

Table V
URL HASHING: SUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Input Size Hash Tree Hash Set BS
1 million 620 456 787
2 million 1348 975 1632
3 million 2120 1454 2556
4 million 2987 2152 4107
5 million 3710 2450 4393

Figure 5. Evaluation time for Successful Search Attempts (i tems 2 D)

An initial uniform hash function was annealed by as-

signing higher evaluations to functions that produced bin sizes
with lower sum square error. Since the hash functions
associated with each bin are generated independently, Step 2
is highly parallelizable. Different SA conditions were set for
the second level hashing as detailed in Table IV.

bytes were hashed, and 5 million randomly generated URLs
of average size of 50 bytes were hashed.

Testing Parameters
The simulated annealing parameters used in step 1 to

uniformly hash the elements into bins are shown in Table 3.

Table III
PARAMETERS USED: STEP 1 DISTRIBUTION

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations 5000
Tree Depth 2
Expected Bin Size (c) 10
Accept/Reject Threshold (t) 15
Evaluation Function SSE

An initial uniform hash function was annealed by as-
signing higher evaluations to functions that produced bin
sizes with lower sum square error. Since the hash functions
associated with each bin aregenerated independently, Step 2
is highly parallelizable. Different SA conditions were set for
the second level hashing as detailed in Table 4.

Table IV
PARAMETERS USED: STEP 2 PERFECT HASH

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations Unti l Per f ect
Tree Depth var iable

Since the initial and secondary hash functions possess a
static depth limit of 2, the worst case number of operations
is 4 for each hash function for a total of 8. Therefore for
datasets of sizes larger than 28 = 256, the hash functions
perform better than the guaranteed logarithmic time for
sorted arrays and binary search.

All testing was conducted on a Thinkpad T400 Laptop
with an Intel 2 Duo 2.2GH z dual-core processor and 4GB
of DDR2

− 667 ram. The algorithm was implemented using
C++ and compiled using the gcc compiler.

Results
For string datasets, words from the English language

were sampled and URLs scraped from the web were used.
In every trial for every string dataset, minimal perfect
hash functions were found. When our resultant functions
(Hash Tree) were compared to the default comparisons of
binary search (BS) on a sorted array and the C++ standard
library’sunordered set (Hash Set) the following results were
obtained.

Table 5 shows results averaged over several trials for
successful search attempts (using i tems 2 D) for various

dataset sizes of URLs hashed. These results are also shown
in Figure 5. Table 6 shows results averaged over several
trials for unsuccessful search attempts (using i tems /2 D)
for various dataset sizes of URLs hashed. These results are
also shown in Figure 6. In our research, we have not found
any comparisons of MPHFs to standard implementations of
non-minimal, non-perfect hash sets. Webelievethis isavalid
comparison as it delineates the advantages of MPHFs over
the easier and ubiquitous standard hash implementations.

The results show our functions were of superior speed
to C++ standard library’s implementation of binary search
on a sorted array. This indicates our function evaluates in
timesuperior to thebasecaseO(lg2(n)). Further assessment
shows that our algorithm performs comparable to C++ stan-
dard library’s unordered set, suggesting O(1) evaluation.

Figure 5 shows that we perform comparable to C++
standard library’s non-minimal, non-perfect hash set for
every data set tested. In the case of unsuccessful search
attempts (test for set membership with non-member data),
Figure 6 shows that weperform about three times faster than
C++ unordered set. This is because the perfect property
guarantees zero collisions: each slot contains exactly one
key. When comparing the key to the stored key within
the table, we may short-circuit at the first mismatch of
characters.

Table V
URL HASHING: SUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Input Size Hash Tree Hash Set BS
1 million 620 456 787
2 million 1348 975 1632
3 million 2120 1454 2556
4 million 2987 2152 4107
5 million 3710 2450 4393

Figure 5. Evaluation time for Successful Search Attempts (i tems 2 D)

Since the initial and secondary hash functions possess a

static depth limit of 2, the worst case number of operations is
4 for each hash function for a total of 8. Therefore for datasets
of sizes larger than 28 = 256, the hash functions perform better
than the guaranteed logarithmic time for sorted arrays and
binary search.

All testing was conducted on a Thinkpad T400 Laptop with
an Intel 2 Duo 2.2GHz dual-core processor and 4GB of
DDR2

−667 ram. The algorithm was implemented using C++
and compiled using the gcc compiler.

Results
For string datasets, words from the English language were

sampled and URLs scraped from the web were used. In every
trial for every string dataset, minimal perfect hash functions
were found. When our resultant functions (Hash Tree) were
compared to the default comparisons of binary search (BS) on
a sorted array and the C++ standard library’s unordered set
(Hash Set) the following results were obtained.

Table V shows results averaged over several trials for
successful search attempts (using items D) for various

dataset sizes of URLs hashed. These results are also shown in
Figure 5. Table VI shows results averaged over several trials

for unsuccessful search attempts (using items ∉ D) for various
dataset sizes of URLs hashed. These results are also shown in
Figure 6. In our research, we have not found any comparisons
of MPHFs to standard implementations of non-minimal, non-
perfect hash sets. We believe this is a valid comparison as it

delineates the advantages of MPHFs over the easier and
ubiquitous standard hash implementations.

The results show our functions were of superior speed to
C++ standard library’s implementation of binary search on a
sorted array. This indicates our function evaluates in time
superior to the base case O(lg2(n)). Further assessment shows
that our algorithm performs comparable to C++ standard
library’s unordered set, suggesting O(1) evaluation.

Figure 5 shows that we perform comparable to C++
standard library’s non-minimal, non-perfect hash set for every
data set tested. In the case of unsuccessful search attempts
(test for set membership with non-member data), Figure 6
shows that we perform about three times faster than C++
unordered set. This is because the perfect property guarantees
zero collisions: each slot contains exactly one key. When
comparing the key to the stored key within the table, we may
short-circuit at the first mismatch of characters.

bytes were hashed, and 5 million randomly generated URLs
of average size of 50 bytes were hashed.

Testing Parameters
The simulated annealing parameters used in step 1 to

uniformly hash the elements into bins are shown in Table 3.

Table III
PARAMETERS USED: STEP 1 DISTRIBUTION

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations 5000
Tree Depth 2
Expected Bin Size (c) 10
Accept/Reject Threshold (t) 15
Evaluation Function SSE

An initial uniform hash function was annealed by as-
signing higher evaluations to functions that produced bin
sizes with lower sum square error. Since the hash functions
associated with each bin are generated independently, Step 2
is highly parallelizable. Different SA conditions were set for
the second level hashing as detailed in Table 4.

Table IV
PARAMETERS USED: STEP 2 PERFECT HASH

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations Unti l Per f ect
Tree Depth var iable

Since the initial and secondary hash functions possess a
static depth limit of 2, the worst case number of operations
is 4 for each hash function for a total of 8. Therefore for
datasets of sizes larger than 28 = 256, the hash functions
perform better than the guaranteed logarithmic time for
sorted arrays and binary search.

All testing was conducted on a Thinkpad T400 Laptop
with an Intel 2 Duo 2.2GH z dual-core processor and 4GB
of DDR2

− 667 ram. The algorithm was implemented using
C++ and compiled using the gcc compiler.

Results
For string datasets, words from the English language

were sampled and URLs scraped from the web were used.
In every trial for every string dataset, minimal perfect
hash functions were found. When our resultant functions
(Hash Tree) were compared to the default comparisons of
binary search (BS) on a sorted array and the C++ standard
library’s unordered set (Hash Set) the following results were
obtained.

Table 5 shows results averaged over several trials for
successful search attempts (using i tems 2 D) for various

dataset sizes of URLs hashed. These results are also shown
in Figure 5. Table 6 shows results averaged over several
trials for unsuccessful search attempts (using i tems /2 D)
for various dataset sizes of URLs hashed. These results are
also shown in Figure 6. In our research, we have not found
any comparisons of MPHFs to standard implementations of
non-minimal, non-perfect hash sets. Webelieve this isavalid
comparison as it delineates the advantages of MPHFs over
the easier and ubiquitous standard hash implementations.

The results show our functions were of superior speed
to C++ standard library’s implementation of binary search
on a sorted array. This indicates our function evaluates in
time superior to the base case O(lg2(n)). Further assessment
shows that our algorithm performs comparable to C++ stan-
dard library’s unordered set, suggesting O(1) evaluation.

Figure 5 shows that we perform comparable to C++
standard library’s non-minimal, non-perfect hash set for
every data set tested. In the case of unsuccessful search
attempts (test for set membership with non-member data),
Figure 6 shows that we perform about three times faster than
C++ unordered set. This is because the perfect property
guarantees zero collisions: each slot contains exactly one
key. When comparing the key to the stored key within
the table, we may short-circuit at the first mismatch of
characters.

Table V
URL HASHING: SUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Input Size Hash Tree Hash Set BS
1 million 620 456 787
2 million 1348 975 1632
3 million 2120 1454 2556
4 million 2987 2152 4107
5 million 3710 2450 4393

Figure 5. Evaluation time for Successful Search Attempts (i tems 2 D)

Table VI

URL HASHING: UNSUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Size Hash Tree Hash Set BS
1 million 119 352 315
2 million 217 742 656
3 million 344 990 998
4 million 536 1597 1579
5 million 591 1545 1693

Figure 6. Evaluation time for Unsuccessful Search (i tems /2 D)

Algorithm Robustness - Using Skewed Datasets

To test the robustness of our algorithm and resultant
data structure, our algorithm was run on skewed datasets
of words taken from the English language. A set of 58000
English words, 892 English anagrams, and the 1000 most
commonly used English words were supplied as datasets to
our algorithm. We tested a variety of skewed datasets, in
every case our algorithm found a MPHF, demonstrating the
robustness of our algorithm.

Comparison of Different Algorithms’ Evaluation Times

To show our algorithm’s comparable evaluation time to
that of other MPHF algorithms, the resultant hash functions’
evaluation time was compared to that of others that use
random graphs in the generation of MPHFs. We compared
our algorithm to recent algorithms developed by Fox and
algorithms developed by Botelho [6,7]. Weran our algorithm
on 5 million URLs of size 50 bytes and 10 million randomly
generated strings of size 20 bytes. Our resultant hash func-
tions were superior, executing over seven times faster. Since
their timings were obtained from a slightly older processor,
all we can conclude is that our algorithm produces functions
that are comparable to previous researchers. Table 7 depicts
our results (HT) vs Botelho and Fox.

Table VII
EVALUATION TIMES

Algorithm Comparisons
Dataset Size Size HT Botelho FOX
URLs 5 ⇥ 106 50 bytes 1.93s 15.1s -
Random 10 ⇥ 106 20 bytes 2.156s 12.29s 13.70s

Number of Functions Generated
Assuming each function generated is equally likely to be

drawn from the functions f : D ! (0 . . . n

− 1) where
n is the size of a bin, the number of possible functions
is nn , of which n! are MPHFs. Given the assumption of
the uniformity in likelihood of generating functions (e.g. all
functions are equally likely to be annealed), any function
from the function space has a probability of p = n !

n n

of perfectly hashing the elements of that bin. Thus the
functions annealed can be reused for multiple bins. Running
our algorithm with datasets of various sizes, the number of
functions generated appears to be sub-linear in relation to
dataset size. This suggests that as dataset size increases, the
number of new functions that need to be annealed decreases
dramatically. The probability that a new function needs to be
annealed for a given bin is (1

− p)# f un ct i on s st or ed . Clearly
the probability that a new function needs to be annealed as
number of stored annealed functions increases approaches
zero. This data is depicted in Table 8 and Figure 7.

Table VIII
URL HASHING: # FUNCTIONS GENERATED

String Hashing: Number of Functions Annealed
Input Size Avg Number of Unique Functions
1 million 4678
2 million 7440
3 million 9883
4 million 10435
5 million 10663

Figure 7. Number of Functions Generated for Various Dataset Sizes

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

377

Algorithm Robustness – Using Skewed Datasets
To test the robustness of our algorithm and resultant data

structure, our algorithm was run on skewed datasets of words
taken from the English language. A set of 58000 English
words, 892 English anagrams, and the 1000 most commonly
used English words were supplied as datasets to our algorithm.
We tested a variety of skewed datasets, in every case our
algorithm found a MPHF, demonstrating the robustness of our
algorithm.

Comparison of Different Algorithms’ Evaluation Times
To show our algorithm’s comparable evaluation time to

that of other MPHF algorithms, the resultant hash functions’
evaluation time was compared to that of others that use
random graphs in the generation of MPHFs. We compared our
algorithm to recent algorithms developed by Fox and
algorithms developed by Botelho [6,7]. We ran our algorithm

on 5 million URLs of size 50 bytes and 10 million randomly
generated strings of size 20 bytes. Our resultant hash functions
were superior, executing over seven times faster. Since their
timings were obtained from a slightly older processor, all we
can conclude is that our algorithm produces functions that are
comparable to previous researchers. Table VII depicts our
results (HT) vs Botelho and Fox.

Number of Functions Generated
Assuming each function generated is equally likely to be

drawn from the functions f : D

→ (0...n

− 1) where n is the
size of a bin, the number of possible functions is nn, of which
n! are MPHFs. Given the assumption of the uniformity in
likelihood of generating functions (e.g. all functions are
equally likely to be annealed), any function from the function
space has a probability of p = n!/nn of perfectly hashing the
elements of that bin. Thus the functions annealed can be
reused for multiple bins. Running our algorithm with datasets
of various sizes, the number of functions generated appears to
be sub-linear in relation to dataset size. This suggests that as
dataset size increases, the number of new functions that need
to be annealed decreases dramatically. The probability that a
new function needs to be annealed for a given bin is
(1

−p)#functions stored. Clearly the probability that a new function
needs to be annealed as number of stored annealed functions
increases approaches zero. This data is depicted in Table VIII
and Figure 7.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

378

Table VI
URL HASHING: UNSUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Size Hash Tree Hash Set BS
1 million 119 352 315
2 million 217 742 656
3 million 344 990 998
4 million 536 1597 1579
5 million 591 1545 1693

Figure 6. Evaluation time for Unsuccessful Search (i tems /2 D)

Algorithm Robustness - Using Skewed Datasets

To test the robustness of our algorithm and resultant
data structure, our algorithm was run on skewed datasets
of words taken from the English language. A set of 58000
English words, 892 English anagrams, and the 1000 most
commonly used English words were supplied as datasets to
our algorithm. We tested a variety of skewed datasets, in
every case our algorithm found a MPHF, demonstrating the
robustness of our algorithm.

Comparison of Different Algorithms’ Evaluation Times

To show our algorithm’s comparable evaluation time to
that of other MPHF algorithms, the resultant hash functions’
evaluation time was compared to that of others that use
random graphs in the generation of MPHFs. We compared
our algorithm to recent algorithms developed by Fox and
algorithms developed by Botelho [6,7]. Weran our algorithm
on 5 million URLs of size 50 bytes and 10 million randomly
generated strings of size 20 bytes. Our resultant hash func-
tions were superior, executing over seven times faster. Since
their timings were obtained from a slightly older processor,
all we can conclude is that our algorithm produces functions
that are comparable to previous researchers. Table 7 depicts
our results (HT) vs Botelho and Fox.

Table VII
EVALUATION TIMES

Algorithm Comparisons
Dataset Size Size HT Botelho FOX
URLs 5 ⇥ 106 50 bytes 1.93s 15.1s -
Random 10 ⇥ 106 20 bytes 2.156s 12.29s 13.70s

Number of Functions Generated
Assuming each function generated is equally likely to be

drawn from the functions f : D ! (0 . . . n

− 1) where
n is the size of a bin, the number of possible functions
is nn , of which n! are MPHFs. Given the assumption of
the uniformity in likelihood of generating functions (e.g. all
functions are equally likely to be annealed), any function
from the function space has a probability of p = n !

n n

of perfectly hashing the elements of that bin. Thus the
functions annealed can be reused for multiple bins. Running
our algorithm with datasets of various sizes, the number of
functions generated appears to be sub-linear in relation to
dataset size. This suggests that as dataset size increases, the
number of new functions that need to be annealed decreases
dramatically. The probability that a new function needs to be
annealed for a given bin is (1

− p)# f un ct i on s st or ed . Clearly
the probability that a new function needs to be annealed as
number of stored annealed functions increases approaches
zero. This data is depicted in Table 8 and Figure 7.

Table VIII
URL HASHING: # FUNCTIONS GENERATED

String Hashing: Number of Functions Annealed
Input Size Avg Number of Unique Functions
1 million 4678
2 million 7440
3 million 9883
4 million 10435
5 million 10663

Figure 7. Number of Functions Generated for Various Dataset Sizes

IV. CONCLUSIONS
We applied the search heuristic of simulated annealing to

the problem of finding a minimal perfect hash function for a
static set. For both integers and strings, in every trial con-
ducted for every input size, our algorithm generated minimal
perfect hash functions. Experimental results suggest that the
generating algorithm possesses linear time complexity.
Este`banz, Castro, Ribagorda, and Isasi used Genetic
Programming techniques to evolve uniform hash functions
(non-minimal, non-perfect) [10]. Safdari has employed
evolutionary algorithms in gener- ating uniform hash functions
as well [11]. To our knowledge, our algorithm is the first time
an evolutionary computation technique was used to solve the
MPHF problem. Several key features differentiate our
algorithm from other MPHF algorithms in the literature:

 Simulated annealing generates robust MPHFs
tailored to the data, even when these data are skewed

 Our algorithm analyzes a subsequence of multivalued
elements to be hashed resulting in fast evaluation
time

 Because our algorithm fixes the tree depth to two and
uses simple operations, it exhibits fast evaluation
times

 Reduction of hashing multivalued elements to integer
hashing, results in fast evaluation time

 We developed a novel data-structure consisting of a
tree traversed by evaluating hash functions.

 The functions are reusable both within the same
instance of the algorithm, and among different
instances

Finally, for large multivalued keys such as strings, our
algorithm shows considerable speedup since it does not
examine every value within the key. This coupled with the
reduction of multivalued keys to integers after the first step
provides for fast evaluation of our generated functions. When
compared to running binary search on a sorted array
containing the static data, our algorithm showed considerable
speed advantage. When our MPHF’s evaluation was compared
to the use of the non-minimal and non-perfect, C++ STL
unordered set, our algorithm showed comparable evaluations
for successful searches and three times the speed improvement
for unsuccessful searches while maintaining the bijective
property of minimal perfect hashing. In addition, we ran our
algorithm against MPHF algorithms from the literature and
obtained comparable, if not superior results.

For future work, it may be possible to apply this general
“divide-and-conquer” strategy to similar problems involving
hashing and distribution. For starters, the very same algorithm
used to generate our Hash Tree structure is highly
parallelizable, offering the potential for speedups using GPU
computing or MapReduce. Furthermore, it may be possible to
extend the core hashing algorithm as a conflict-resolution
mechanism for non-static sets.

REFERENCES

[1] Cichelli, R. J. Minimal perfect hash functions made simple. Commun.
ACM 23(1):17-19, 1980.

[2] D. E. Knuth, The Art of Computer Programming, vol. 1: Searching and
Sorting. Reading, MA: Addison Wesley, 1973.

[3] Sprugnoli, R. Perfect hashing functions: A single probe retrieving
method for static sets. Comm. ACM, 20(Il):841-850, 1977.

[4] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. (1983). “Optimization by
Simulated Annealing”. Science 220 (4598): 671–680.

[5] Z.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for
generating minimal perfect hash functions. Information Processing
Letters, 43(5):257-264, 1992.

[6] E.A Fox, L.S. Heath, Q. Chen and A.M Daoud, Practical Minimal
Perfect Hash Functions for Large Databases, Comm. ACM 35 (1)
(1992) 105-121.

[7] Botelho, F., Menotti, D. and Ziviani, N. (2004). A new algorithm for
constructing minimal perfect hash functions. Technical Report
TR004/04, Department of Computer Science, Universidade Federal de
Minas Gerais.

[8] G. Havas and B.S. Majewski. Optimal algorithms for minimal perfect
hashing. Technical Report 234, The University of Queensland, Key
Centre for Software Technology, Queensland, July 1992.

[9] Koza JR. Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems. Report No.
STAN-CS-90-1314, Stanford, CA: Stanford University; 1990.

[10] Ce`sar Este`banez, Julio Ce`sar Herna`ndez Castro, Arturo Ribagorda,
and Pedro Isasi. Evolving hash functions by means of genetic

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.56 e-ISSN: 2251-7545

379

programming. In Mike Cattolico, editor, GECCO, pages 1861-1862.
ACM, 2006.

[11] Mustafa Safdari, Evolving universal hash functions us- ing genetic
algorithms. GECCO ’09 Proceedings of the 11th Annual Conference

Companion on Genetic and Evolutionary Computation Conference.
2729-2732. ACM, 2009.

