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Abstract—We developed minimal perfect hash functions for a 
variety of datasets using the probabilistic process of simulated 
annealing (SA). The SA solution structure is a tree representing 
an annealed program (algorithm). This solution structure is 
similar to the structure used in genetic programming. When 
executed, the SA program produces multiple hash functions for 
the given data set. An initial hash function called the distribution 
function is generated. This function attempts to uniformly place 
the keys into bins in preparation for a minimal perfect hash 
function determined later. For each trial, and for every data set 
of various size tested, our algorithm annealed a minimal perfect 
hash function. Our algorithm is applied to datasets of strings 
from the English language and to a list of URL's. Bloat control is 
used to ensure a small fixed depth limit to our solution, to 
simplify function complexity, and to ensure fast evaluation. 
Experimental results show that our algorithm generates hash 
functions that outperform both widely known non-minimal, non-
perfect hashing schemes as well as other recent algorithms from 
the literature.  
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I. INTRODUCTION  
The worst case complexity of locating an item within an 

array is O(n)  where n is the number of items within the array. 
This worst case complexity can be reduced to O(lg2(n))  if the 
array is sorted and binary search is used to locate elements. 
Ultimately, the desired search time is constant time, O(1) . A 
perfect hash function (PHF) is a hash function that maintains 
the injective property commonly known as “one-to-oneness”, 
while a minimum perfect hash function (MPHF) is a perfect 
hash function with the added restriction of surjection, “onto-
ness”. Such a function bijectively maps a static set D to a set 
of integers associated with indices of a table. Static search sets 
are common in many areas of computer science and software 
applications. Some instances of static search sets are the set of 
reserved words in compilers and interpreters, file-names on 
read-only optical media, common English words (English 
Dictionary), and indexed columns within databases [1]. Knuth 
and others have asserted that the finding of perfect hash 
functions is a computationally hard problem [1,2,3]. 

Simulated annealing (SA), first described by Kirkpatrick, 

Gelatt, and Vecchi, is a meta-heuristic optimization technique 
that derives its name from the process of annealing in 
metallurgy[4]. Each iteration of simulated annealing modifies 
the representation of a possible solution. This perturbed 
solution is either accepted or rejected based on its overall 
quality, and a “temperature" parameter. The algorithm 
occasionally accepts worse solutions in an effort to avoid the 
local extrema that ensnare most hill-climbing algorithms. 

 Others have generated perfect hash functions using both 
probabilistic and deterministic methods. Current methods of 
generating MPHF involve generation of random graphs 
[5,6,7]. These attempts, however, fail to incorporate patterns 
in the data when searching the solution space.  While these 
methods show fast evaluation time, they do not fully leverage 
the static nature of the keys to minimize evaluation time of the 
resultant functions. Other methods often have super-linear 
run-time [8]. The advantage our heuristic-based hill-climbing 
approach has over these approaches is the methodology's use 
of the static nature of the keys. Patterns and irregularities of 
the data are taken into consideration, and the deviation from 
the desired output is used as a guiding metric towards a 
solution with no collisions. 

Genetic programming is a technique developed by John 
Koza. It is best described as the evolution-inspired process by 
which a computer program is discovered that produces a 
desired set of outcomes when presented with particular inputs 
[9]. While the approach of genetic programming may seem 
like a suitable technique for creating a MPHF, we 
implemented both techniques and found that the simulated 
annealing technique generates MPHF faster than genetic 
programming. We believe this is because our tree-encoded 
hash functions lack the optimal substructure required for 
genetic programming. As such simulated annealing provides 
comparable results to genetic programming without the 
associated overheads, such as crossover or maintaining large 
populations. 

 

II. METHODOLOGY 
The overall strategy to generate our hash functions may be 
described as follows: 
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1. First transform arbitrary keys into unique integers 
2. Use simulated annealing to generate a function which 

hashes integer keys to bins 
3. If we have few enough keys, then it is not too hard 

computationally to find a MPHF which hashes each 
key to a single slot 

4. If we have many keys, then each bin will contain 
many keys, and will require additional processing. In 
this case we recurse to step 2, using the bins as the 
“new’ dataset 

The hash function may thus be represented as a tree-like 
data structure, with auxiliary distribution functions generated 
by simulated annealing at each node. 

Given this overview, we will now describe in detail the 
methodology in a “bottom-up" fashion. That is, we will first 
describe the simulated annealing which takes place at each 
node of the tree, and we will then describe the algorithm 
which generates the tree itself. 

A. Simulated Annealing 
We used a tree structure to represent each auxiliary 

function. Each non-terminal tree node contains a function 
pointer to a binary operator, and each terminal contains an 
operand (a constant or a function argument). The operators 
used for the generated functions were selected from elementary 
integer mathematical operators with emphasis on 
computational simplicity, as shown in Table I. 

  
Below is an example of a hash function generated by our 

algorithm. 

 

B. Bloat Control 
Since hash functions should possess O(1) evaluation time, 

we used complete binary trees of fixed depth to represent our 
auxiliary functions. In our research, we never find need for a 
tree depth greater than three (meaning three levels past the tree 
root). This method of bloat control ensures O(1) evaluation 
time, with 2depth 

 

− 1 operator evaluations. 

C. Perturbation Method 
We represent each function with a complete binary tree 

composed of 2depth 

 

− 1 operators and 2depth terminal nodes. To 
perturb a given solution, we generate a random integer 

 

 (0, 
2depth+1 

 

− 1) referring to a particular node. If the node selected 
is a terminal node, a random ephemeral constant or a randomly 
chosen input argument is placed within the node. If the integer 
falls within the 2depth 

 

− 1 operator nodes, the subtree of the 
node at the given point is replaced with a randomly generated 
subtree. 

D. Generation of Function Tree Structure 
Table II reviews the terminology used in the section. 

 

 

Step 1: Distribution: Generation of Uniform Hash Function 
For large numbers of integer keys, it is too 

computationally difficult (using our method of simulated 
annealing) to find a function that immediately perfectly hashes 
the keys. Thus, we first use the simulated annealing previously 
described to uniformly distribute the keys amongst the set of 
bins, B. The use of simulated annealing is justified since the 
auxiliary function should hash any key to any of the b 

 

 B 
with equal probability, a property cannot be assumed for a 
general algorithm which is unaware of the probability 
distribution from which the keys are drawn. We choose the 
number of bins, |B|, based on number of the target number of 
keys for each bin, c, and the number of elements to be hashed, 
n, from dataset D: |B| = n/c. Since the desired c outcome is 
that each bin contains as close to c elements as possible, we 
use the sum of the square errors (SSE) from this c to evaluate 
these auxiliary functions. The smaller the SSE, the higher the 
evaluation. 

Evaluation Function 
To evaluate the generated function, an array B is created. 

The function fB is then evaluated indicating the number of 
elements in each bin. 

 
The evaluation is then calculated as the SSE of the number 

of elements in each bin from the expected number c. 
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A higher evaluation is assigned to functions that exhibit 

lower square error. For each iteration the highest-evaluated 
function is compared to the “running best” and if greater, 
replaces the running best. This methodology is repeated for a 
fixed number of iterations. 

Step 2: Hash – Generation of Minimal Perfect Hash Functions 
Following step 1, the algorithm has generated a collection 

of bins. For each of these bins, it examines the number of 
elements in the bin. If the number of elements is above some 
pre-determined threshold, the algorithm recurses to step 1, 
using the current bin as a “new” dataset. This is because it is 
difficult to generate bijective mappings from n integers to the 
set 1..n for large n, using our operators. 

For each bin whose size is below the threshold, the 
algorithm generates a perfect minimal hash function. The set 
of leaf functions, fpi , will be stored in a new table T which 
maps leaf bin i to fpi . 

Step 2 follows the same methodology as Step 1, differing only 
in the evaluation function. Consider only the bins B[i] where 
|B[i]| ≤ thresh. For each of these bins, we create a new 
temporary array X of size |B[i]|. The secondary hash function 
attempts to perfectly and minimally hash the elements in each 
bin in its associated array X. After first counting the number of 
elements hashed into each index of X, a second pass calculates 
the evaluation score by adding the number of elements in each 
index choose 2, (x[index] choose 2), to the total evaluation. 
This is a penalty since n elements hashed to the same index 
indicates (n choose 2) collisions among them. Hence given the 
index of each bin, B[i]: 

 

Thus collisions are minimized since functions with more 
collisions are given lower evaluations. As with the process in 
step 1, for every iteration the current function is compared to 
the “running best”, and, if it possesses a higher evaluation, it 
replaces the running best. 

Reuse of Previously Generated Functions 
To save both time required to generate a new minimal 

perfect hash function and space associated with storing a 
multitude of minimal perfect hash functions, all previously 
generated functions are evaluated on each bin prior to 
generating a new hash function. If a candidate function 

perfectly hashes a bin, we associate the function with the bin. 
If no candidate function perfectly hashes the elements in that 
bin, a new perfect hash function is generated. 

A summary of the algorithm that generates the hash 
function is given in Figure 1. 

 

Function Evaluation 
Given a key to hash, each non-leaf node applies its 

distribution function to select an appropriate child node, and 
each leaf node applies its MPHF to the key. The MPHF 
pseudocode is given in Figure 2. 

String Hashing 
To generate functions that operate on character strings, we 
first reduce the strings to unique integers. We then apply same 
methodology described in Section 3.1 to these integers. 

The annealed perfect hash functions, in addition to 
maintaining the “perfect” property of no collisions, must be 
able to differentiate permutations, commonly known within 
the English language as anagrams, as distinct strings. Thus the 
mapping of strings to integer values must map permutations of 
strings to distinct integers. 
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The Mapping Step 
To map strings to integers, each individual character must 

be assigned an integer value. In our algorithm, the ASCII 
value of each character was used. Clearly naive methods such 
as summation of the ASCII representation of each character 
violate the previous requirement of differentiation between 
permutations due to the commutativity of addition. The use of 
a non-commutative operator such as subtraction also fails to 
satisfy distinctiveness among permutations. For example: 
2

 

−3−4 equals 2

 

−4−3. 

In order to reduce a multi-character string to a single 
integer, a higher-order function called a fold is used. This fold 
will accept a function and a string as parameters, and 
recursively combine the accumulated value with the value of 
the next character of the string resulting in a new accumulated 
value. This process is repeated until every character in the 
string is taken into consideration. In the case of the function 
addition, a fold would essentially be the summation of the 
integer representation of each character. For this process to 
work, the input function must distinctively identify 
permutations of strings. This input function is generated 
through our simulated annealing process. It is crucial that the 
hash functions generated for strings are bivariate functions as 
opposed to the univariate functions annealed for integer hash 
functions. This is because the input function of the fold 
requires two parameters. The bivariate property of the 
functions generated accommodates the passing of an 
accumulated value and the next character in the string 
sequence. An example string hash function takes the following 
form where f is a bivariate annealed function:  

 
We use the operation, %, after each accumulation to 

prevent the accumulated value from growing too large. This is 
actually not necessary in our C++ implementation as 
operations disregard any significant bits over 32 in standard 
computer words. Using this method, strings are effectively 
reduced to integers. It follows that the same simulated 
annealing process for integer hashing can be used to generate 
functions for string hashing. 

The mapping step is equivalent to non-minimal perfect 
hashing. The number of strings, n, to be minimally and 
perfectly hashed will be uniquely associated with an integer 
number. Hence the possible associated values a string can 
assume is in the range [0..232 

 

− 1] using a computer word. 
Clearly no two strings can possess the same integer value, 
which can be considered analogous to an index. Thus, the task 
is reduced to minimal hashing with load factor (ratio of the 
number of elements to slots in the hash table) which is n/232 in 
the case of integers and n/264 in the case of long integers. A 
graphical representation of the mapping step between strings 
and integers is shown in Figure 3. 

 

Proper Subsequence Mapping 
Since hash functions require fast evaluation time, we may 

leverage the static property of our data sets to eliminate the 
requisite of examining every value in a multi-valued key (e.g 
every character in a string). Using a simulated annealing or 
greedy approach, we identify a uniquely identifying 
subsequence of the keys within each bin for the unique integer 
mapping step. The function is only applied to the unique 
subsequence within the keys, reducing evaluation time. 
Therefore, we associate with each bin a list of indices 
referencing the shortest uniquely identifying subsequence 
found. 

 

Data Structure: Hash Tree 
Hashing a particular key to a table index requires 

navigating a data structure that we call the hash tree. The root 
of the hash tree is a uniform function that returns the index of 
one of its children. If the node is a leaf node, the node contains 
a pointer to a perfect hash function associated with that leaf 
which maps the key to its appropriate location. If the node is 
not a leaf node, then it contains a function that will return an 
index to a child node. The tree generated was always at most 
depth three, with navigation through the tree based on the 
image of a function when applied to a key. This provides for 
essentially constant time traversal of the tree. A graphical 
representation of our Hash Tree data structure is shown in 
Figure 4. 
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III. RESULTS AND DISCUSSION 
 

Data Sets 
To test the effectiveness of the SA methodology, our 

algorithm was applied to sets of strings. These sets were 
composed of, respectively, the 1000 most commonly used 
words in the English language, 892 English words consisting 
solely of anagrams, and a set of 58000 English words. In 
addition a dataset of 5 million URLs of average size of 76 
bytes were hashed, and 5 million randomly generated URLs of 
average size of 50 bytes were hashed. 

Testing Parameters 
The simulated annealing parameters used in step 1 to 

uniformly hash the elements into bins are shown in Table III. 

bytes were hashed, and 5 million randomly generated URLs
of average size of 50 bytes were hashed.

Testing Parameters
The simulated annealing parameters used in step 1 to

uniformly hash the elements into bins are shown in Table 3.

Table III
PARAMETERS USED: STEP 1 DISTRIBUTION

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations 5000
Tree Depth 2
Expected Bin Size (c) 10
Accept/Reject Threshold (t ) 15
Evaluation Function SSE

An initial uniform hash function was annealed by as-
signing higher evaluations to functions that produced bin
sizes with lower sum square error. Since the hash functions
associated with each bin are generated independently, Step 2
is highly parallelizable. Different SA conditions were set for
the second level hashing as detailed in Table 4.

Table IV
PARAMETERS USED: STEP 2 PERFECT HASH

PARAMETERS VALUES
Temperature 100
alpha 0.9
beta 1.2
iterations Unti l P er f ect
Tree Depth var i able

Since the initial and secondary hash functions possess a
static depth limit of 2, the worst case number of operations
is 4 for each hash function for a total of 8. Therefore for
datasets of sizes larger than 28 = 256, the hash functions
perform better than the guaranteed logarithmic time for
sorted arrays and binary search.

All testing was conducted on a Thinkpad T400 Laptop
with an Intel 2 Duo 2.2GH z dual-core processor and 4GB
of DDR2

 

− 667 ram. The algorithm was implemented using
C++ and compiled using the gcc compiler.

Results
For string datasets, words from the English language

were sampled and URLs scraped from the web were used.
In every trial for every string dataset, minimal perfect
hash functions were found. When our resultant functions
(Hash Tree) were compared to the default comparisons of
binary search (BS) on a sorted array and the C++ standard
library’s unordered set (Hash Set) the following results were
obtained.

Table 5 shows results averaged over several trials for
successful search attempts (using i tems 2 D ) for various

dataset sizes of URLs hashed. These results are also shown
in Figure 5. Table 6 shows results averaged over several
trials for unsuccessful search attempts (using i tems /2 D )
for various dataset sizes of URLs hashed. These results are
also shown in Figure 6. In our research, we have not found
any comparisons of MPHFs to standard implementations of
non-minimal, non-perfect hash sets. Webelieve this isavalid
comparison as it delineates the advantages of MPHFs over
the easier and ubiquitous standard hash implementations.

The results show our functions were of superior speed
to C++ standard library’s implementation of binary search
on a sorted array. This indicates our function evaluates in
time superior to the base case O(lg2(n)). Further assessment
shows that our algorithm performs comparable to C++ stan-
dard library’s unordered set, suggesting O(1) evaluation.

Figure 5 shows that we perform comparable to C++
standard library’s non-minimal, non-perfect hash set for
every data set tested. In the case of unsuccessful search
attempts (test for set membership with non-member data),
Figure 6 shows that we perform about three times faster than
C++ unordered set. This is because the perfect property
guarantees zero collisions: each slot contains exactly one
key. When comparing the key to the stored key within
the table, we may short-circuit at the first mismatch of
characters.

Table V
URL HASHING: SUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Input Size Hash Tree Hash Set BS
1 million 620 456 787
2 million 1348 975 1632
3 million 2120 1454 2556
4 million 2987 2152 4107
5 million 3710 2450 4393

Figure 5. Evaluation time for Successful Search Attempts (i tems 2 D )
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5 million 591 1545 1693
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Algorithm Robustness - Using Skewed Datasets

To test the robustness of our algorithm and resultant
data structure, our algorithm was run on skewed datasets
of words taken from the English language. A set of 58000
English words, 892 English anagrams, and the 1000 most
commonly used English words were supplied as datasets to
our algorithm. We tested a variety of skewed datasets, in
every case our algorithm found a MPHF, demonstrating the
robustness of our algorithm.

Comparison of Different Algorithms’ Evaluation Times

To show our algorithm’s comparable evaluation time to
that of other MPHF algorithms, the resultant hash functions’
evaluation time was compared to that of others that use
random graphs in the generation of MPHFs. We compared
our algorithm to recent algorithms developed by Fox and
algorithms developed by Botelho [6,7]. Weran our algorithm
on 5 million URLs of size 50 bytes and 10 million randomly
generated strings of size 20 bytes. Our resultant hash func-
tions were superior, executing over seven times faster. Since
their timings were obtained from a slightly older processor,
all we can conclude is that our algorithm produces functions
that are comparable to previous researchers. Table 7 depicts
our results (HT) vs Botelho and Fox.

Table VII
EVALUATION TIMES

Algorithm Comparisons
Dataset Size Size HT Botelho FOX
URLs 5 ⇥ 106 50 bytes 1.93s 15.1s -
Random 10 ⇥ 106 20 bytes 2.156s 12.29s 13.70s

Number of Functions Generated
Assuming each function generated is equally likely to be

drawn from the functions f : D ! (0 . . . n

 

− 1) where
n is the size of a bin, the number of possible functions
is nn , of which n! are MPHFs. Given the assumption of
the uniformity in likelihood of generating functions (e.g. all
functions are equally likely to be annealed), any function
from the function space has a probability of p = n !

n n

of perfectly hashing the elements of that bin. Thus the
functions annealed can be reused for multiple bins. Running
our algorithm with datasets of various sizes, the number of
functions generated appears to be sub-linear in relation to
dataset size. This suggests that as dataset size increases, the
number of new functions that need to be annealed decreases
dramatically. The probability that a new function needs to be
annealed for a given bin is (1

 

− p)# f un ct i on s st or ed . Clearly
the probability that a new function needs to be annealed as
number of stored annealed functions increases approaches
zero. This data is depicted in Table 8 and Figure 7.

Table VIII
URL HASHING: # FUNCTIONS GENERATED

String Hashing: Number of Functions Annealed
Input Size Avg Number of Unique Functions
1 million 4678
2 million 7440
3 million 9883
4 million 10435
5 million 10663

Figure 7. Number of Functions Generated for Various Dataset Sizes
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Algorithm Robustness – Using Skewed Datasets 
To test the robustness of our algorithm and resultant data 

structure, our algorithm was run on skewed datasets of words 
taken from the English language. A set of 58000 English 
words, 892 English anagrams, and the 1000 most commonly 
used English words were supplied as datasets to our algorithm. 
We tested a variety of skewed datasets, in every case our 
algorithm found a MPHF, demonstrating the robustness of our 
algorithm. 

Comparison of Different Algorithms’ Evaluation Times 
To show our algorithm’s comparable evaluation time to 

that of other MPHF algorithms, the resultant hash functions’ 
evaluation time was compared to that of others that use 
random graphs in the generation of MPHFs. We compared our 
algorithm to recent algorithms developed by Fox and 
algorithms developed by Botelho [6,7]. We ran our algorithm 

on 5 million URLs of size 50 bytes and 10 million randomly 
generated strings of size 20 bytes. Our resultant hash functions 
were superior, executing over seven times faster. Since their 
timings were obtained from a slightly older processor, all we 
can conclude is that our algorithm produces functions that are 
comparable to previous researchers. Table VII depicts our 
results (HT) vs Botelho and Fox. 

 

Number of Functions Generated 
Assuming each function generated is equally likely to be 

drawn from the functions f : D 

 

→ (0...n 

 

− 1) where n is the 
size of a bin, the number of possible functions is nn, of which 
n! are MPHFs. Given the assumption of the uniformity in 
likelihood of generating functions (e.g. all functions are 
equally likely to be annealed), any function from the function 
space has a probability of p = n!/nn of perfectly hashing the 
elements of that bin. Thus the functions annealed can be 
reused for multiple bins. Running our algorithm with datasets 
of various sizes, the number of functions generated appears to 
be sub-linear in relation to dataset size. This suggests that as 
dataset size increases, the number of new functions that need 
to be annealed decreases dramatically. The probability that a 
new function needs to be annealed for a given bin is 
(1

 

−p)#functions stored. Clearly the probability that a new function 
needs to be annealed as number of stored annealed functions 
increases approaches zero. This data is depicted in Table VIII 
and Figure 7. 
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Table VI
URL HASHING: UNSUCCESSFUL SEARCH ATTEMPTS

Avg Time for URL Hashing (ms)
Size Hash Tree Hash Set BS
1 million 119 352 315
2 million 217 742 656
3 million 344 990 998
4 million 536 1597 1579
5 million 591 1545 1693

Figure 6. Evaluation time for Unsuccessful Search (i tems /2 D )

Algorithm Robustness - Using Skewed Datasets

To test the robustness of our algorithm and resultant
data structure, our algorithm was run on skewed datasets
of words taken from the English language. A set of 58000
English words, 892 English anagrams, and the 1000 most
commonly used English words were supplied as datasets to
our algorithm. We tested a variety of skewed datasets, in
every case our algorithm found a MPHF, demonstrating the
robustness of our algorithm.

Comparison of Different Algorithms’ Evaluation Times

To show our algorithm’s comparable evaluation time to
that of other MPHF algorithms, the resultant hash functions’
evaluation time was compared to that of others that use
random graphs in the generation of MPHFs. We compared
our algorithm to recent algorithms developed by Fox and
algorithms developed by Botelho [6,7]. Weran our algorithm
on 5 million URLs of size 50 bytes and 10 million randomly
generated strings of size 20 bytes. Our resultant hash func-
tions were superior, executing over seven times faster. Since
their timings were obtained from a slightly older processor,
all we can conclude is that our algorithm produces functions
that are comparable to previous researchers. Table 7 depicts
our results (HT) vs Botelho and Fox.

Table VII
EVALUATION TIMES

Algorithm Comparisons
Dataset Size Size HT Botelho FOX
URLs 5 ⇥ 106 50 bytes 1.93s 15.1s -
Random 10 ⇥ 106 20 bytes 2.156s 12.29s 13.70s

Number of Functions Generated
Assuming each function generated is equally likely to be

drawn from the functions f : D ! (0 . . . n

 

− 1) where
n is the size of a bin, the number of possible functions
is nn , of which n! are MPHFs. Given the assumption of
the uniformity in likelihood of generating functions (e.g. all
functions are equally likely to be annealed), any function
from the function space has a probability of p = n !

n n

of perfectly hashing the elements of that bin. Thus the
functions annealed can be reused for multiple bins. Running
our algorithm with datasets of various sizes, the number of
functions generated appears to be sub-linear in relation to
dataset size. This suggests that as dataset size increases, the
number of new functions that need to be annealed decreases
dramatically. The probability that a new function needs to be
annealed for a given bin is (1

 

− p)# f un ct i on s st or ed . Clearly
the probability that a new function needs to be annealed as
number of stored annealed functions increases approaches
zero. This data is depicted in Table 8 and Figure 7.

Table VIII
URL HASHING: # FUNCTIONS GENERATED

String Hashing: Number of Functions Annealed
Input Size Avg Number of Unique Functions
1 million 4678
2 million 7440
3 million 9883
4 million 10435
5 million 10663

Figure 7. Number of Functions Generated for Various Dataset Sizes  
 

IV. CONCLUSIONS 
We applied the search heuristic of simulated annealing to 

the problem of finding a minimal perfect hash function for a 
static set. For both integers and strings, in every trial con- 
ducted for every input size, our algorithm generated minimal 
perfect hash functions. Experimental results suggest that the 
generating algorithm possesses linear time complexity. 
Este`banz, Castro, Ribagorda, and Isasi used Genetic 
Programming techniques to evolve uniform hash functions 
(non-minimal, non-perfect) [10]. Safdari has employed 
evolutionary algorithms in gener- ating uniform hash functions 
as well [11]. To our knowledge, our algorithm is the first time 
an evolutionary computation technique was used to solve the 
MPHF problem. Several key features differentiate our 
algorithm from other MPHF algorithms in the literature: 

 Simulated annealing generates robust MPHFs 
tailored to the data, even when these data are skewed  

 Our algorithm analyzes a subsequence of multivalued 
elements to be hashed resulting in fast evaluation 
time  

 Because our algorithm fixes the tree depth to two and 
uses simple operations, it exhibits fast evaluation 
times  

 Reduction of hashing multivalued elements to integer 
hashing, results in fast evaluation time  

 We developed a novel data-structure consisting of a 
tree traversed by evaluating hash functions.  

 The functions are reusable both within the same 
instance of the algorithm, and among different 
instances  

Finally, for large multivalued keys such as strings, our 
algorithm shows considerable speedup since it does not 
examine every value within the key. This coupled with the 
reduction of multivalued keys to integers after the first step 
provides for fast evaluation of our generated functions. When 
compared to running binary search on a sorted array 
containing the static data, our algorithm showed considerable 
speed advantage. When our MPHF’s evaluation was compared 
to the use of the non-minimal and non-perfect, C++ STL 
unordered set, our algorithm showed comparable evaluations 
for successful searches and three times the speed improvement 
for unsuccessful searches while maintaining the bijective 
property of minimal perfect hashing. In addition, we ran our 
algorithm against MPHF algorithms from the literature and 
obtained comparable, if not superior results.  

For future work, it may be possible to apply this general 
“divide-and-conquer” strategy to similar problems involving 
hashing and distribution. For starters, the very same algorithm 
used to generate our Hash Tree structure is highly 
parallelizable, offering the potential for speedups using GPU 
computing or MapReduce. Furthermore, it may be possible to 
extend the core hashing algorithm as a conflict-resolution 
mechanism for non-static sets.  

REFERENCES 
 

[1] Cichelli, R. J. Minimal perfect hash functions made simple. Commun. 
ACM 23(1):17-19, 1980. 

[2] D. E. Knuth, The Art of Computer Programming, vol. 1: Searching and 
Sorting. Reading, MA: Addison Wesley, 1973. 

[3] Sprugnoli, R. Perfect hashing functions: A single probe retrieving 
method for static sets. Comm. ACM, 20(Il):841-850, 1977. 

[4] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. (1983). “Optimization by 
Simulated Annealing”. Science 220 (4598): 671–680. 

[5] Z.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for 
generating minimal perfect hash functions. Information Processing 
Letters, 43(5):257-264, 1992. 

[6] E.A Fox, L.S. Heath, Q. Chen and A.M Daoud, Practical Minimal 
Perfect Hash Functions for Large Databases, Comm. ACM 35 (1) 
(1992) 105-121. 

[7] Botelho, F., Menotti, D. and Ziviani, N. (2004). A new algorithm for 
constructing minimal perfect hash functions. Technical Report 
TR004/04, Department of Computer Science, Universidade Federal de 
Minas Gerais. 

[8] G. Havas and B.S. Majewski. Optimal algorithms for minimal perfect 
hashing. Technical Report 234, The University of Queensland, Key 
Centre for Software Technology, Queensland, July 1992. 

[9] Koza JR. Genetic programming: A paradigm for genetically breeding 
populations of computer programs to solve problems. Report No. 
STAN-CS-90-1314, Stanford, CA: Stanford University; 1990. 

[10] Ce`sar Este`banez, Julio Ce`sar Herna`ndez Castro, Arturo Ribagorda, 
and Pedro Isasi. Evolving hash functions by means of genetic 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 
San Francisco State University, CA, U.S.A., March 2013 
Doi: 10.7321/jscse.v3.n3.56         e-ISSN: 2251-7545 

 

379 
 

programming. In Mike Cattolico, editor, GECCO, pages 1861-1862. 
ACM, 2006. 

[11] Mustafa Safdari, Evolving universal hash functions us- ing genetic 
algorithms. GECCO ’09 Proceedings of the 11th Annual Conference 

Companion on Genetic and Evolutionary Computation Conference. 
2729-2732. ACM, 2009. 
 

 
 


