
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

422

An Efficient Method for Improving Backfill Job Scheduling Algorithm in Cluster
Computing Systems

Zeynab Moradpour Hafshejani1

Islamic Azad University,
Shabestar, Iran

Seyedeh Leili Mirtaheri2
Iran University of Science and

Technology, School of
Computer Engineering,

Tehran, Iran

 Ehsan Mousavi Khaneghah3

Iran University of Science and
Technology, School of

Computer Engineering,
Tehran, Iran

 Mohsen Sharifi4
Iran University of Science and

Technology, School of
Computer Engineering,

Tehran, Iran

Abstract— One of the most important issues in cluster

computing systems is the efficient use of resources to increase
the performance of systems and hence decrease their response
times. These objectives can best be pursued by job schedulers
in cluster computing systems. However, existing schedulers in
cluster computing systems do not use resources efficiently. This
paper proposes a new method for efficient allocation of
submitted jobs to resources. Jobs consist of threads that are
arranged in a two-dimensional matrix. Using the horizontal
scanning of this matrix, threads of different jobs are allocated
to different processors, preventing resources becoming idle. In
previous method of scheduling, the resources are allocated to
total threads of a job synchronization but in proposed method,
the resources are allocated to threads of various jobs. In new
method if there aren’t available resources enough for a job,
threads of different jobs can run thus waste of resources are
minimum. Simulation results of our proposed scheduling
method show quicker cluster system response time than FCFS
and Backfilling scheduling methods.

Keywords- cluster computing system; scheduling; computing

resource; thread; response time.

I. INTRODUCTION
A great number of large scale applications in science,

engineering and economy are performed on parallel systems
in order to achieve high performance computing. Some
clusters of computer have been placed as effective and
appropriate substitutes for parallel computers owing to rapid
advancements in producing powerful microprocessors and
high speed networks and standard software tools. Therefore,
parallel computing extensively migrated from expensive
supercomputers to cheaper clusters. Clusters are formed of
several stand-alone computers which are connected together
via a network and manage the resource sharing of
workstations and the distribution of computational
capability effectively [9, 11].

The scheduling topic in distributed systems and clusters
is one of the significant topics in more utilization of
available resources and reducing the response time. Job
scheduling softwares are amongst important softwares in
clusters. Aim of job scheduling concerns appropriate
allocation of processors and subsequently maximizing the
use of system resources and reducing the average response
time. Parallel job scheduling is one of the subjects on which
considerable researches have been carried out. A parallel job

consists of several processors performing simultaneously all
which carry out a certain computation [10].

In distributed systems and clusters the scheduling is
conducted in three methods according to the sharing policy
of processors as follows: 1. Space-sharing 2. Time- sharing
3.Hybrid (a composition of space-sharing and time-sharing).

In space sharing policy the number of processors P is
divided into N partition every which is used exclusively for
performing a job. In time-sharing policy the possibility of
using a collection of processors is not given exclusively to a
job and instead the possibility of share using of processors is
given to severed jobs by giving a time slice from each
processor to each job, e.g., round robin.

In performing parallel jobs the space-sharing policy is
mostly used. This policy is implemented in two ways of
static and dynamic. The static mode in which the size of
partition is fixed is implemented in three models of Fix,
Variable and Adaptive [1, 2, 4]. In Fix partitioning model,
the size of partition which is determined according to the
properties of workload in the start time of the system
remains fixed for a long time and it changes only with
restarting the system.

The advantage of this method is easy implementation
and its disadvantage involves non-adaptively between the
size of partition and the job request to processor and as a
result internal fragmentation occurs.

In Variable partitioning model, the size of partition is
determined based on user’s request when proposing the job.
The problems of this model relates to the size of partition,
which is not affected by system load changes and the
tendency job for monopolizing the system resources.

In Adaptive partitioning model, the size of partition
depends on both user’s request and system load.

Although the two recent models are better than the Fix
model, there are still problems of not releasing resources,
fragmentation and waste of resources because assigning the
partition is conducted for the life time of a job.

The idea behind Dynamic partitioning policy is to take
away idle processors from a job and allocate them to
another job in order to be able to increase the performance
of processors. The problems of this method are extra
overhead caused by repartitioning and the need of
coordination between the application and operating system
to take away processors from the application. To lessen the

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

423

overhead it is necessary to wait until computations reach a
desirable point and as a result of this the system overhead
decreases (end of a computational phase) [1, 2, 3].

Most of the algorithms in space-sharing give rise to the
formation of sets of unused resources in system. To resolve
the fragmentation problem in FCFS 1 , the Backfilling is
proposed that eventually brings about a major improvement
in the performance of resource. In this method, when there
are no enough processors in the queue for the next job, the
algorithm goes forward in the queue until it reaches a job
whose required processor is less or equal to the number of
free processors and runs that.

Despite the improvement that the backfilling achieves in
using resource, if there is no job that requires fewer
processors than free processors, the free processors will
remain idle. Another defect of this method is that small jobs
requiring fewer resources may queue for long and wait until
the running of a large job finishes and afterwards resources
are released. Estimating the running time of jobs is amongst
other important topics in the backfilling method. Estimation
methods are always affected by error.

For decreasing and improving these problems a new
method is proposed. This method use threads for resource
allocating instead of allocating resource to total process of a
job.

A process is an activity within the system that is started
with a command, shell script, or another process[16] and a
thread is a kind of dispatchable process with few overhead
that need few resources to run.

In this method, a matrix for keeping incoming jobs to
system in the node having been introduced as a node
receiving incoming jobs in cluster is defined. The number of
columns of this matrix is equal to the number of incoming
jobs to system and the number of rows of this matrix is
equal to the number of threads of the biggest incoming job
to the node and it is changeable.

With matrix horizontal scanning, resource allocate to
first threads of some jobs instead of allocating resource to
total processors of a job simultaneously. So, contrary to last
algorithms if there aren’t enough resources for a job,
available resources don’t remain idle and threads of some
jobs use idle resources.

We used Simgrid tool for simulating method.
Evaluations show because resources don’t allocate to total
processes of a job simultaneously, it is possible that
response time be more than backfilling algorithm for
proposed jobs in head of queue but because don’t remain
resource idle and use of resource optimally, overall system’s
response time decreases and system’s utilization increases.

 The rest of this paper is organized as follow. Section 2
discusses the related work. Section 3 introduces the
architecture of our scheduling method in cluster system. In
section 4, we simulate and evaluate this strategy with

1 First come first service

Simgrid in part 5. Finally, we end this paper with
conclusions.

II. RELATED WORKS

As it was considered, for resolving the fragmentation
problem in FCFS, the backfilling is offered that brings about
a major improvement in the performance of resources. In
this method, when there are no enough processors in the
queue for the next job, it goes forward in the queue until it
reaches a job whose required processor is less or equal to
the number of free processors and runs that. There is also a
more efficient algorithm called preemptive backfilling and if
there are no jobs with high priority in this method, resources
will be reserved for those and then resources will be given
to the job with low priority. If job with higher priority is
proposed, running job is finished in one of these cases such
as: suspend-resume, checkpoint-restart, kill-restart and job
with higher priority get resources. The Maui scheduler uses
preemptive backfilling in addition to the backfilling and
advanced reservation [1].

With attention to reserved resources parameter in
backfilling, the classifications of this technique are as
follows:

 ESAY Backfilling
 Conservative backfilling
 Flexible Backfilling
 Multiple-queue backfilling

If reservation takes place only for the first available job,
it is called easy backfilling which ultimately might delay
other jobs and hence the conservative backfilling technique
was designed. In this method, reservation is carried out for
all jobs before the backfilled job to prevent any delays.
These two methods are not dynamic and the waiting time of
the job in the queue is not considered and as a result the
Flexible backfilling method was designed. In this algorithm,
each job waiting in the queue is given a slack factor for the
computation of which the waiting time of job in the queue is
considered (for example if the slack factor is equal to three
this means that jobs may wait three times the average
waiting time). Important jobs have smaller slacks than other
jobs. “Lawson and Amirin” presented another method called
multiple-queue backfilling in which each job is given to a
queue in accordance with its expected running time and
each queue is given to a partition of the parallel system and
only the jobs of this queue can be run. Conducted
examinations show that the advantage of this method to the
single-queue method involves the possibility that small jobs
in the queue delay behind long jobs is less [5, 6, 7, 8].

Despite the improvement that the backfilling achieves in
using resources and even the usage of dynamic method in
space-sharing and release of processors upon finishing the
running of their related processes and the possibility of
repartitioning and more use of free resources, if there is no
job that requires less processors than free processors, the
free processors will remain idle.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

424

Another defect of this method is that small jobs requiting
fewer resources may queue for long and wait until the
running of a large job finishes and afterwards resources are
released. Estimating the running time of jobs is amongst
other important topics in the backfilling methods.
Estimating the running time is determined either by user
when submitting a job or by system with using the data and
information which have been achieved from previous
running history either estimation methods are always
affected by errors [12].

Raised problems of these inaccurate estimations concern
illogical prediction of the running time of the relevant job
via user. For example, in LSF2 user is given a command to
determine the running time of the job and now if the running
time of the job exceeds this time the job will be killed.
Another problem involves over estimation of running time.
Therefore if the job finishes sooner, these resources cannot
be used for running a job with higher priority because of
being used by the backfilled job. Of course, the LSF has
resolved this problem by using checkpoint. Another
problem is also resulted when there is no appropriate job for
backfilling due to inaccurate estimation of long running
time that causes wasting resources [7].

In order to reduce the above-mentioned problems, a new
method is introduced, which improves the problems
increasingly.

One of approach for improving use of resources in the
past was to add a time-sharing dimension to space-sharing
using a technique called gang scheduling or co-
scheduling(All tasks of a parallel job are always co-
scheduled to run concurrently.). This technique virtualizes
the physical machine by slicing the time axis into multiple
space-shared virtual machines that use backfilling.
Algorithm can be represented by a matrix, in which the rows
represent time slices and the columns represent processors.
Each row of the matrix defines a virtual parallel machine,
which has the same number of processors as the physical
machine but runs slower. We use these virtual machines to
run multiple parallel jobs. Multiprogramming level (MPL)
in general depends on how many jobs can be executed
concurrently, but is typically limited by system resources.

This approach opens more opportunities for the
execution of parallel jobs, and is thus quite effective in
reducing the wait time [14].

One of approach for resolving backfilling problems in
the past was Multiple-queue Backfilling Scheduling with
Priorities and Reservations for Parallel Systems. In this
approach the system is divided into multiple disjoint
partitions by classifying jobs according to their duration (not
their requested number of processors). Initially, processors
are divided evenly among the partitions. As time evolves,
the partitions may exchange processors therefore idle
processors in one partition can be used for backfilling in
another partition. Therefore, partition boundaries become

2 load sharing facility

dynamic, allowing the system to adapt itself to changing
workload conditions. Furthermore, the policy does not
starve a job that requires the entire machine for execution.
Each partition contains its own separate queue of jobs.
When a job is submitted, it is classified and assigned to the
queue in one of partitions after all previously queued high
priority jobs but before the first low priority job in the queue
[13]. One of approach’s disadvantages is Inaccurate running
time estimation by user that is caused job put in unsuitable
queue. Therefore, running time of other jobs is affected.
Furthermore it have overhead of repartitioning but there
isn’t need to repartitioning and user running time estimation
in new proposed method.

Another proposed approach was Combinational
backfilling scheduling (CBA) in 2010. Combinational
backfilling scheduling is that according to the state of the
free resources, it selects a group of small jobs to backfill the
resources gap to maximize the utilization of resources in
clusters. There are two special cases for CBA scheduling
strategy. Firstly, when there are no combinational jobs in the
waiting jobs queue, the degradation of CBA is EASY
backfilling. Secondly, when there are no jobs in the waiting
jobs queue, the degradation of CBA is FCFS scheduling
algorithm. The results of experiments show that the CBA
algorithm improves the utilization of resources in clusters
compared with EASY backfilling and FCFS algorithm [11].

This approach has inaccurate running time estimation
problems, too. Furthermore if there aren’t combinational
jobs for free resources, the resources remain unused.

Above policies have disadvantages such as need to
repartitioning, additional overhead is caused by it, cost of
context switching, need to user runtime estimation and
problems of inaccurate estimations and to remain idle
resource unused but in proposed method, firstly, it doesn’t
need to user runtime estimation and therefore it don’t have
inaccurate estimations problems, secondly small jobs after
big jobs don’t wait very much for running and threads of
small jobs are running with threads of big jobs
simultaneously, thirdly don’t need to go forward in the
queue for reaching a job whose required processor is less or
equal to the number of free processors. Therefore, resources
don’t remain idle even if there isn’t a smaller job in the
queue. In new approach, threads of jobs start to run and free
resources don’t remain idle and it doesn’t have costs of
context switching and it’s overhead.

III. PROPOSED METHOD

The proposed method carries out the scheduling of jobs
for efficient use of the resources of system and is
implemented as follow:

In this method, contrary to space-sharing policy and
time-sharing policy in both which the complete allocation of
job is used, thread definition is used. In this manner that in
space-sharing policy all required resources of a job must be
available for its start or in time-sharing policy that a
collection of resources must be shared between several jobs

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

425

and a time quantum of source is allocation to each job in
series and this manner continues until the end of execution
of all jobs; however, the proposed method acts as follows:

The required resources are given to first process of
several jobs instead of being given to all processes of a job.
Thus, a matrix for keeping incoming jobs to system in the
node having been introduced as a node receiving incoming
jobs in cluster is defined. The number of columns of this
matrix is equal to the number of incoming jobs to system
and the number of rows of this matrix is equal to the number
of threads of the biggest incoming job to the node and it is
changeable such as the following matrix:

 J3p6

J1p5

 J3p5

J1p4

 J3p4

 J6p4

J1p3 J2p3

 J3p3

 J6p3

 J8p3

J1p2 J2p2

 J3p2

 J4p2

 J6p2

 J7p2

 J8p2

J1p1 J2p1 J3p1

 J4p1

 J5p1

 J6p1

 J7p1

 J8p1

1 2 3 4 5 6 7 8 9

Figure 1. Matrix of incoming jobs in receiving node

To allocate these jobs to available nodes in the cluster,
the method initially creates the node of a queue and selects
the members of this queue in the following manner:

Instead of allocating the processes of a job completely to
the queue, for instance the j1 processes of p1 to p5 (j1p1 to
j1p5) it moves forward with a horizontal view to the matrix
and observes then column of matrix all together and
allocates the threads of the first row of this n job to
resources(processors). Then, this row shifts to up and the
threads of the second row insert this n job into the queue
and in this manner it advances until the last row of the
matrix. In this allocation, the quantity of n could vary. If n is
quall to 1, it will become that of FCFS model and as a result
all threads of a job will be allocated to processors.

The quantity of n is chosen by considering the first
column of the matrix and setting the quantity of n by the
number of threads of the available job in this column. Thus,
it selects an n*n hypothetical matrix and examines if in this
matrix there is any job the number of threads of which is
more than n. in this case if there is any job with the number
of threads more than n, it changes the dimensions of the
hypothetical matrix to the number of the threads of that job
and continues until it reaches a matrix having no job with
the number of thread more than the dimensions of the
matrix. After this, it starts inserting the members of this
matrix horizontally into one-dimensional queue like figure2,
3. To select the dimensions of next matrix again the first job
after the matrix is considered to repeat the aforementioned
cycle additionally with attention to the number of threads of
the job.

In this method, this opportunity is given to n jobs, that
is, with each thread any job having maximum size in the
matrix find the possibility of being run and do not delay
greatly. Now upon the availability of resources, the jobs
available in the queue find the possibility of being run. For
example:

 J3p6

J1p5

 J3p5

J1p4

 J3p4

 J6p4

J1p3 J2p3

 J3p3

 J6p3

 J8p3

J1p2 J2p2

 J3p2

 J4p2

 J6p2

 J7p2

 J8p2

J1p1 J2p1 J3p1

 J4p1

 J5p1

 J6p1

 J7p1

 J8p1

1 2 3 4 5 6 7

 8 9

Figure 2. Matrix of incoming jobs in node

 In the beginning, with selecting the available job in the

first column, which has 5 threads, a 5*5 matrix is
considered; however, because the third available job in
matrix has 6 threads, the dimensions of the matrix change to
6*6 and consequently by scanning the horizontal rows of the
matrix threads are inserted into the queue.

 J3p6

J1p5

 J3p5

J1p4

 J3p4

 J6p4

J1p3 J2p3

 J3p3

 J6p3

 J8p3

J1p2 J2p2

 J3p2

 J4p2

 J6p2

 J7p2

 J8p2

J1p1 J2p1 J3p1

 J4p1

 J5p1

 J6p1

 J7p1

 J8p1

1 2 3 4 5 6 7

 8 9

Figure 3. Matrix of incoming jobs in queue

Afterwards, the queue is observed in FCFS and thus it

starts allocating these threads to available processors in the
cluster. Each thread may release the source in variant times
depending on its running time and with the release of the

J
1
p
1

J
2
p
1

J
3
p
1

J
4
p
1

J
5
p
1

J
6
p
1

J
1
p
2

J
2
p
2

J
3
p
2

J
4
p
2

J
6
p
2

J
1
p
3

J
2
p
3

J
3
p
3

J
6
p
3

J
1
p
4

.

.

.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

426

some next thread of the queue is allocated to free resource
like figure 4.

This question may be raised that if there is data
dependency between threads, how is the need of data
solved?

The method performs as follows:
The first thread become dangler and observes the queue. If
the relevant thread was allocated to a resource, it receives
the result from that source, otherwise in case that the
relevant thread had not been allocated yet to a source for
running, it would have been given the priority “1” which is
inserted into the queue of the CPU of dangled thread and is
placed in front of the dangled thread to be run and provide
the required data of the dangled thread.

Figure 4. Example of resource allocation in cluster

The above method has several advantages and
disadvantages. It seems that if n becomes bigger than an
amount, it causes the first available job in the queue to have
more running time than the common FCFS model; however,
it also has some advantages, that is, by choosing an
appropriate amount for that this delay in running could be
ignored.

Firstly, in this method contrary to the backfilling
algorithm there is no need to the running time by user and
these matters increasingly because user’s inaccurate
estimations led to many problems mentioned above.
Secondly, small jobs after long jobs do not wait
considerably until the running of big job finishes and then
they are run and this method can decrease the running time
of small job and simultaneously with the running of some of
the threads of big job the threads of small job also find
running time.

Thirdly, in the event that the number of free resources is
less than the number of required resources of available job
in the head of the queue, there will be no need to search for
finding the job requiring less number of resources and jobs
are run in the order of possibility and even if small jobs do
not exist in the queue, resources will not stand idle and the
execution of the threads of jobs will continue and
consequently no source will stand idle.

IV. EVALUATION

Scheduling of processes onto processors of a parallel
machine has always been an important and challenging area
of research. Its importance stems from the impact of the
scheduling discipline on the throughput and response times
of the system [15]. Therefore with improve these results,
utility of system increase. These terms is defined like this:
Throughput is number of performed jobs per time unit.
Response time is different between times of entering job to
system and completing job. Utilization is percent of time
that system is running really [1].

Simulation has been done with using Simgrid simulation
software for three models like FCFS, backfilling, improved
backfilling and results for response time parameter are
described below.

a. Analyzing the overall response time of system

In this proposed method an approach like round robin

instead of FCFS is used. Therefore, in contrary to
backfilling model, the total processes of a job do not receive
resources and there is a possibility that the response time of
a job is more than other approach, but because it does not
remain resources stay unused and the threads of jobs can
run. Therefore, the usage of resources is maximized and the
overall response time of system will be improved. A
simulation shows that the response time in FCFS is more
than backfilling and that the proposed method has a
response time better than backfilling and FCFS.

In FCFS, jobs are scheduled based on being proposed
and entering queue and if there aren’t enough resources in
the system for next job in the queue, the job can’t run and
the resources remain idle till enough required resources is
prepared. Improvement in backfilling is more than FCFS.
When there are no enough processors in the queue for the
next job, the method goes forward in the queue until it
reaches a job, whose required processor is less or equal to
the number of free processors, and runs that. When other
used resources are free, the job in the head of the queue can
run. If there is no job that requires fewer processors than
free processors, the free processors will remain idle.
However, simulation methods show that the overall
response time decreases considerably. The simulation was
carried out in several numbers of jobs.

There are charts of 3 experiments with 1292, 2018 and
3113 proposed jobs in figure 5, 6, 7.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

427

Figure 5. Comparison of overall response time in 3
Scheduling methods in 1292 proposed job

Figure 6. Comparison of overall response time in 3
Scheduling methods in 2018 proposed job

Figure 7. Comparison of overall response time in 3

Scheduling methods in 3113 proposed job

Last chart is obtained with 3113 proposed jobs. As

mentioned, this method works based on threads and if there
is a minimum of required resources for running a thread, the
thread uses the resources and run. In this way, resources
aren’t wasted and the use of resources is maximized. If there
are not sufficient free resources, the relevant thread waits
until enough resources become available. Therefore,
wasting resources is not considerable.

“Fig. 8” is obtain of last experiment with 3113 proposed
jobs and represents that the overall response time of system
in new method decreases thus the utility of system
increases. For example for running 3113 proposed jobs,
overall response time of system is decreased from 4313 and
4197 in FCFS and backfilling to 3861 in new method. The
total threads of a job are running simultaneously in normal
approaches of scheduling. This means that the total required
resources of a job must be prepared so that threads can
receive resources and run. If there is adequate free
resources, next jobs of the queue will run sequentially. If
small jobs are proposed later than big jobs, they must wait
to realize their required resources which are used by big
jobs. Therefore, the small jobs after big jobs will have high
response time.

Figure 8. Comparison of overall response time of system

However, the new-proposed method relies on the

horizontal scanning of jobs matrix. The first threads of some
jobs start to run; then the second threads; after this the third
threads and again this rhythm would repeat. Therefore, the
distribution of resources between jobs is more reasonable
and controlled and if big jobs are proposed before small
jobs, it would be possible to run small jobs faster and to
decrease their waiting time. Although existing jobs in the
head of the queue may have had greater response time than
previous approaches, in contrary to FCFS and backfilling
algorithm, its advantage is that wasting resources is minimal

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

428

and the use of resources is most. As the simulation charts
demonstrate, there is a decrease in response time average in
this method.

In previous approach, a job starts to run completely and
it is possible that this job may not be able to run entirely due
to lack of sufficient resources, whereas in the proposed
approach, which is based on threads, even if there are not
enough resources for a job, threads of some jobs can still
run. This eventually allows jobs to run and wasting
resources is minimized. The new method proceeds without a
dependency on estimating of the running time of jobs and as
a result inaccurate estimation does not exist anymore.
Estimation of the jobs running time is conducted by user or
system via either using historical data through repeated
executions of the job or compile-time analysis. The
estimation method is always affected by errors. One of the
problems of inaccurate estimation concerns illogic forecast
of the jobs runtime by user. For example, if the runtime is
underestimated and the real runtime of job is more, the job
will be killed. Furthermore, overestimation of the runtime
could be caused the inappropriate selection of jobs, while
the new-proposed method avoids inaccurate estimations.

V. CONCLUSION
 As highlighted in previous cases, in this proposed

method the overall response time of system would decrease
because process of various jobs can receive resources
instead of receiving resources by the total process of a job
simultaneously. Therefore, if there are not sufficient
resources to run a job, threads of jobs still can run and
resources don’t remain unused. In addition, the new method
has the advantage of allowing the jobs after big jobs to run
faster, which in fact prevents these jobs from waiting for
running of big jobs and realizing resources. Consequently,
the waiting time and response time of next small jobs in
queue would decrease. In this approach, if there are not
sufficient resources to run a job, threads of jobs still can run.
Thus, other free resources would not remain idle and jobs
would be able to run and the utilization of system could
increase.

Although, this proposed method has advantages but
there is some disadvantage such as it is possible that
response time of a job is more than before specially for jobs
at the first of queue or it is possible that primary-submitted
jobs are not respond immediately. Moreover, despite the
disadvantages of the new method for primary-submitted
jobs and response time of a job, it is preferred to FCFS and
backfilling because of its features such as optimum usage of
resources, increasing utilization of system, and decreasing
the overall response time of system.

In this paper, a new method proposed for improving
backfilling scheduling. In the future work, it would be
interesting to study scheduling methods in other distributed
systems and extend of this new method in these systems and
new cluster which aren’t central.

REFERENCES
[1] I. Grudenić, "Scheduling Algorithms and Support Tools

for parallel systems," 2008. [Online].
[2] J. H. Abawajy and S. P. Dandamudi, "Time/Space

Sharing Distributed Job Scheduling Policy in a
Workstation Cluster Environment," in Parallel
Computing in Electrical Engineering, 2000. PARELEC
2000. Proceedings. International Conference on, 2000 ,
pp. 116-120.

[3] G. S. K. Amit Chhabra, "Simulated Performance
Analysis of Multiprocessor Dynamic Space-Sharing
Scheduling policy," IJCSNS International Journal of
Computer Science and Network S 326 ecurity, vol. 9
No.2, Feb. 2009.

[4] P. D. Y. Sivarama, "Performance Sensitivity of Space-
Sharing Processor Scheduling in Distributed-Memory
Multicomputers," in Parallel Processing Symposium,
1998. IPPS/SPDP 1998. Proceedings of the First Merged
International ... and Symposium on Parallel and
Distributed Processing 1998, Ottawa, Ontario K1S 5B6,
Canada, 1998, pp. 403-409.

[5] C. Scheduling, "Cluster Scheduling," 159.735.
[6] L. R. Dror G. Feitelson, "Parallel Job Scheduling—A

Status Report," Computer Engineering Institute-
Universit¨at Dortmund, Dortmund, Germany, A Status
Report 44221.

[7] J. Wang and W. Guo, "The Application of Backfilling in
Cluster Systems," in Communications and Mobile
Computing, 2009. CMC '09. WRI International
Conference on , Beijing, 100876, P.R.China, 2009, pp.
55-59.

[8] A. M. G. Adam K.L. Wong, "evaluating the EASY-
Backfill Job Scheduling of Static Workloads on
Clusters," in Cluster Computing, 2007 IEEE
International Conference on , 2007, pp. 64-73.

[9] A. T. S. C. ,. Y. S. Jiannong Cao, "A taxonomy of
application scheduling tools for high performance
cluster computing," Springer Science, vol. 9, p. 355–
371, 2006.

[10] D. G. F. Edi Shmueli, "Backfilling with lookahead to
Optimize the Performance of Paralell Job Scheduling".

[11] S. Yi, Z. Wang, S. Ma, Z. Che, and Feng,
"Combinational Backfilling for Parallel Job
Scheduling," in Education Technology and Computer
(ICETC), 2010 2nd International Conference on , china,
2010, pp. V2-112-V2-116.

[12] S. K. Dimitriadou and H. D. Karatza, "Job Scheduling in
a Distributed System Using Backfilling with Inaccurate
Runtime Computations," in Complex, Intelligent and
Software Intensive Systems (CISIS), 2010 International
Conference on , 2010, pp. 329-336.

[13] E. S. Barry G. Lawson, "Multiple-Queue Backflling
Scheduling with Priorities and Reservations for Parallel
Systems," springer, vol. 2537, no. Lecture Notes in
Computer Science,Job Scheduling Strategies for Parallel
Processing, pp. 72-87, 2002.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:
The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],
San Francisco State University, CA, U.S.A., March 2013
Doi: 10.7321/jscse.v3.n3.64 e-ISSN: 2251-7545

429

[14] Y. Zhang, H. Franke, J. E. Moreira, and A.
Sivasubramaniam, "Improving parallel job scheduling
by combining gang scheduling and backfilling
techniques," in Parallel and Distributed Processing
Symposium, 2000. IPDPS 2000. Proceedings. 14th
International, 2000, pp. 133-142.

[15] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H.
Franke, "Impact of Workload and System Parameters on
Next Generation Cluster Scheduling Mechanisms," in
Parallel and Distributed Systems, IEEE Transactions on
, 2001, pp. 967-985.

[16] K. Milberg. (2007, Mar.) Process priority and control on
AIX.

