
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.67 e-ISSN: 2251-7545

446

A Review on Software Engineering Methods for

Distributed Systems

Hamid Reza Ranjbar
Department of Computer Engineering, Islamic Azad

University, Science and Research Branch,

Booshehr, Iran

Email: H.R_Ranjbar@yahoo.com

Mehdi Alimi Motlaghfard

Department of Computer Engineering, Islamic Azad

University, Science and Research Branch,

Booshehr, Iran

 Email: Alimi@LianPro.com

Abstract— Today we collect data from different size of

data, different locations and different type with a large

scale in each site. Current computer server systems cannot

process and collect these big data. For this issue,

distributed computing system proposed in the literature.

Supercomputers are changed to distribute computing,

such as cloud computing systems. Software engineering is

a part of each software system. The software engineering

describes the architecture, connection. The software

architecture should responsible for whole the life cycle of a

system include analyzing, designing, implementing and

maintaining a software system. In this paper we will

review different methods of software engineering for

distributed systems.

Keywords—Distributed System; Software Engineering;

Software Methods;

I. INTRODUCTION

The study of software engineering has always been
complex and difficult. The complexity make technical
problems [1, 2]. Some aspects of these problems come
from complex systems.

Several distributed system [10] studies such as [8 ,9]
have been conducted in software engineering for several
years, but have only relatively recently achieved
significant recognition in the broader software
engineering research community. However this subarea
has also reached a discernibly new level of maturity that
is evidenced by the new types of questions and methods
seen in more recent studies. In particular, software
engineering are beginning to address the big data in
software development. One indication of this broadening
of focus is the nature of recent work in traditionally
software engineering research [1]. Some systems and
methods are developed to concur to this complexity such
as Cloud Template [6] that shows how an integrated

system could improve flexibility in the cloud computing
systems.

Some important reasons for using software
engineering are listed below [4]:

 This method is useful for large, high quality
software systems such as distributed
systems.

 Software engineering techniques are needed
because large systems cannot be completely
understood by one person.

 Teamwork and co-ordination are required.

 Key challenge: Dividing up the work and
ensuring that the parts of the system work
properly together.

 The end-product that is produced must be of
sufficient quality

II. WATERFALL DEVELOPMENT

The waterfall model is essentially a slight variation of
the model. The waterfall model which shows in Figure
1is generally attributed to Royce in 1970 [3]. However, a
clearly phased approach to the development of software
including iteration and feedback, could already be found
in publications from the early 1960s and particular for
distributed systems could be found in the early 2000.

The waterfall model [5] development particularly
emphasizes the interaction between each subcategory
phases. Testing software is not an activity which strictly
follows the implementation phase. In each phase of the
software development process, we have to compare the
results obtained against those that are required. In all
phases, quality has to be assessed and controlled.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.67 e-ISSN: 2251-7545

447

In figure 1, in each steps we have a verification and a
validation that presents for asks if the distributed system
meets its requirements such as concurrency and thus tries
to assess the correctness of the transition to the next
phase. Validation asks if the system meets the user’s
requirements such as ACID transactions in distributed
systems [12].

III. RAPID APPLICATION DEVELOPMENT

Rapid Application Development (RAD) [4] is
another method of development process models for a
software application. This development emphasizes user
involvement, reuse, prototyping, the use of automated
tools, and small development teams. In most
development models such as RAD, a set of requirements
is fixed and then the project attempts to fulfill these
requirements within some estimated period of time.
Using this method is difficult for distributed systems. By
using this method, the time frame is decided upon first
and then the project tries to realize the requested
functionality within that time frame. If it turns out that
not all of the functionality can be realized within the time
frame, some of the functionality is sacrificed. The agreed
deadline however is immovable.

An increasing number of computer systems are being
viewed in terms of autonomous agents. Agents are being
espoused as a new theoretical model of computation that
more closely reflects current computing reality than
Turing Machines. Agents are being advocated as a next
generation model for engineering complex, distributed
systems. Agents are also being used as an overarching
framework for bringing together the component AI
subdisciplines that are necessary to design and build
intelligent entities. Yet despite this intense interest, a
number of fundamental questions about the nature and

the use of the agent-oriented approach remain
unanswered.

IV. AGILE SOFTWARE DEVELOPMENT

Agile software development is another important
method in software engineering. The goals of this
method are listed below [4, 5, 7, 12]:

 Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

 Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

 Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the shorter
timescale.

 Business people and developers must
work together daily throughout the
project.

 Build projects around motivated
individuals. Give them the environment
and support they need, and trust them to
get the job done.

 The most efficient and effective method
of conveying information to and within a
development team is face–to–face
conversation.

Requirements

Design

Implementati

on

Testing

Maintainance

Figure 1. Waterfall Software Development

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.67 e-ISSN: 2251-7545

448

 Working software is the primary
measure of progress.

 Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

 Continuous attention to technical
excellence and good design enhances
agility.

 Simplicity – the art of maximizing the
amount of work not done – is essential.

 The best architectures, requirements, and
designs emerge from self–organizing
teams.

 At regular intervals, the team reflects on
how to become more effective, then
tunes and adjusts its behavior
accordingly.

V. SPIRAL” MODEL

The “Spiral” Model [11, 14] shows in figure 2 addresses

many of problems by explicitly including multiple

paradigms in the process model. The spiral model

describes software development as an iteration over four

phases of activity which combine several other

approaches, including specification- driven and

prototype-driven [13] development. The particular

combination of these activities which is to be used at a

given point is determined by the need to identify and

resolve risks in the process. The spiral model, therefore,

represents a significant advance over previous models

due to its incorporation of risk analysis and multiple

paradigms. It does, however, have some shortcomings.

In particular, while the spiral model is well-suited to

describing internal software development projects for an

organization, it appears to be less suitable for describing

software development under external Contract [14].

VI. CONCLUSION

In this paper we review some important development

method of software engineering that could help us to

improve develop software application for distributed

systems. As we mentioned in this paper, the complex

method of development of software engineering will be

more useful than simple method such as Agile or RAD

methods.

REFERENCES

[1] Booch, Grady, Douglas L. Bryan, and Charles G.

Petersen, “Software engineering with Ada”,

Addison-Wesley Professional, 1994.

[2] Roger Pressman, “Software Engineering: A

Practitioner’s Approach”, 7/e McGraw-Hill, Slides

copyright 2009

[3] Van Vliet, Hans, Hans Van Vliet, and J. C. Van

Vliet. Software engineering: principles and practice.

Vol. 2. Wiley, 1993.

[4] Beck, Kent, et al. "Manifesto for agile software

development." (2001).

[5] Van Vliet, Hans, Hans Van Vliet, and J. C. Van

Vliet. Software engineering: principles and practice.

Vol. 2. Wiley, 1993.

[6] Mehdi Bahrami, "Cloud Template, a Big Data

Solution", International Journal of Soft Computing

and Software Engineering [JSCSE], Vol. 3, No. 2,

pp. 13-17, 2013, Doi: 10.7321/jscse.v3.n2.2

[7] Martin, Robert Cecil. Agile software development:

principles, patterns, and practices. Prentice Hall

PTR, 2003.

[8] Tanenbaum, Andrew S., and Maarten Van Steen.
Distributed systems. Vol. 2. Prentice Hall, 2002.

[9] Chandy, K. Mani, and Leslie Lamport. "Distributed
snapshots: determining global states of distributed
systems." ACM Transactions on Computer Systems
(TOCS) 3.1 (1985): 63-75.

[10] Magee, Jeff, Naranker Dulay, and Jeff Kramer.
"Regis: A constructive development environment
for distributed programs." Distributed Systems
Engineering 1.5 (1994): 304.

[11] Sommerville, Ian. "Software process models." ACM
Computing Surveys (CSUR) 28.1 (1996): 269-271.

[12] Tamer èOzsu, M., and Patrick Valduriez. Principles
of distributed database systems. Springer, 2011.

[13] B.W. Boehm, “A spiral model of software
development and enhancement”, IEEE Computer
21:5, 1988

[14] B. W. Boehm, “A Spiral Model of Software
Development and Enhancement,” Proceedings of an
International Workshop on the Software Process and
Software Environments, Coto do Caza, California,
March 1985, published as Software Engineering
Notes, vol. 11, no. 4, 1986, pp. 22-42.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.67 e-ISSN: 2251-7545

449

Figure 2. Spiral Method Development [14]

