
                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.68         e-ISSN: 2251-7545 

 

450 

 

A Brief Review on Models for Performance 

Evaluation in DSS Architecture 

Ghassem Tofighi, Kaamran Raahemifar, Anastasios N. Venetsanopoulos 

Department of Electrical and Computer Engineering 

Ryerson University 

Toronto, Canada 

gtofighi@ryerson.ca, kraahemi@ee.ryerson.ca, tasvenet@ryerson.ca 

 

 
Abstract—Distributed Software Systems (DSS) are used these 

days by many people in the real time operations and modern 

enterprise applications. One of the most important and essential 

attributes of measurements for the quality of service of 

distributed software is performance. Performance models can be 

employed at early stages of the software development cycle to 

characterize the quantitative behavior of software systems. In 

this research, performance models based on fuzzy logic 

approach, queuing network approach and Petri net approach 

have been reviewed briefly. One of the most common ways in 

performance analysis of distributed software systems is 

translating the UML diagrams to mathematical modeling 

languages for the description of distributed systems such as 

queuing networks or Petri nets. In this paper, some of these 

approaches are reviewed briefly. Attributes which are used for 

performance modeling in the literature are mostly machine 

based. On the other hand, end users and client parameters for 

performance evaluation are not covered extensively. In this way, 

future research could be based on developing hybrid models to 

capture user’s decision variables which make system 

performance evaluation more user driven. 

Keywords—Distributed Software Systems; Performance 

Evaluation; Fuzzy logic; Queuing Networks; Petri Nets 

I. INTRODUCTION  

Distributed Software Systems (DSS) are used these days by 
many people in the real time operations and modern enterprise 
applications. A distributed software system can be considered 
as a set of sequential processes that compute locally and 
interact among themselves through communication channels. 
Examples of distributed software systems are Complex e-
commerce sites, data acquisition networks and distributed 
computing environment are very expensive to develop and 
maintain. These systems should provide an adequate level of 
qualities in order to be used. Early quality analysis help to 
identify and correct issues from the early stages of the software 
development, in order to compare design alternatives. It is also 
useful to identify system bottlenecks [1].  

One of the most important and essential attributes of 
measurements for quality of distributed software is 
performance. Software performance includes many quality 

factors of the distributed software systems such as software 
itself, the platform and operating system, middleware, 
hardware, communication networks, and also client and end 
users.  Commonly, it needs a long and expensive tuning 
process at the time of product integration and testing. This 
tuning process occurs too late when software is in its 
development cycle. In this way, early evaluation of 
performance is a vital need in software design. Early 
evaluation applies some kind of model, because the software 
does not exist in the time of evaluation. It is important because 
market pressures. There is a huge competition among 
companies which forces use of performance evaluation models 
to prove the software quality. Developing and verifying these 
models is the domain which is called performance analysis. 

There are many approaches for modeling performance of a 
distributed software system. Soft Computing, Queuing 
Network, Petri net, Pattern-Based, UML Based, Hierarchical 
Modeling, Component-Based Modeling, Scenario-Based, 
Software Architecture Analysis Methods (SAAM), Hybrid 
Approaches such as UML-Petri net, UML-Stochastic Petri net, 
and Queue Petri Nets are some of well-known approaches in 
this field. 

In this paper, we briefly review some recent researches in 
the field of performance analysis based on these three 
approaches: 

A. Fuzzy Logic-based Approach 

These approaches are used when we cannot measure the 
attributes precisely and we should use some soft computing 
methods such as fuzzy logic to overcome this problem. These 
approaches are trying to mimic and emulate the ability of 
human mind for evaluating performance measures in 
uncertainty and imprecision environment. It is used in 
development stage of distributed software system architecture. 
For example, they are employed to estimate the cost of or 
effort of software projects when they are described by either 
numerical data or linguistic values. 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.68         e-ISSN: 2251-7545 

 

451 

 

B. Queuing Networks-based Approach  

One of the common modeling paradigms which consists of 
a set of interconnected queues is this approach. Each queue 
represents a service station, which serves requests sent by 
customers. Several models based on queuing networks have 
been reviewed in this paper. Most of them are based on 
converting UML diagrams of distributed softwares to queuing 
networks. 

C. Queuing Networks-based Approach  

A Petri net is a graphical and mathematical modeling 
language which consists of four basic elements which are 
places, transitions, tokens and arks. In the similar manner to 
queuing network approach, in many methods UML diagrams 
are translated to Petri nets for performance analysis. 

In the following sections we introduce some of these methods 

with more details. 
 

II. FUZZY LOGIC-BASED APPROACH 

 In practice, many factors that describe software projects, 

such as the experience of programmers or the complexity of 

modules, are measured in terms of an ordinal scale composed 

of qualifications such as ‘low’ and ‘high’ [2]. In these 

situations, measuring the attributes precisely is impossible. 

Some soft computing methods such as fuzzy logic is 

employed to overcome this problem. Software performance 

evaluation models are required which consider imprecision 

and uncertainty associated with linguistic variables. One of the 

most important usages of these models is estimation of 

software development effort by analogy and similarity in early 

stages of software development. The similarity of two 

software projects, which are described and characterized by a 

set of attributes, is often evaluated by measuring the distance 

between these two projects through their sets of attributes.  

 In [2] a set of new similarity measures based on fuzzy 

logic is evaluated. They can be used when the software project 

attributes are described with linguistic variables such as ‘low’ 

and ‘high’. These measures are also applicable when the 

variables are numeric while relocating numeric values into a 

singleton fuzzy set (no uncertainty) or into a fuzzy number 

(uncertainty). Attributes considered in this model are software 

size, project mode plus 15 cost drivers.  

 In [3] the economic evaluation of information system 

projects is analyzed based on triangular fuzzy numbers. They 

developed a fuzzy model for evaluating information system 

projects based on their present value. Three parameters 

representing three possible values of project costs, benefits, 

evaluation periods and discount rate are modeled.  Figure 1 

shows an example of modeling these three attributes using 

triangular fuzzy numbers. 

 
Figure. 1 A plot of the three fuzzy present values [3]. 

 

 These fuzzy logic-based approaches are commonly used 

in real-life projects with high degree of uncertainty and risk. 

However, these models are not comprehensive, because they 

just consider some performance measures in development 

phase and they cannot evaluate the performance in production 

environments.  

III. QUEING NETWORKS-BASED APPROACH  

In [1] performance and specification models are integrated 

to provide a tool for quantitative evaluation of software 

architecture in the design phase.  Attributes considered in this 

research are number of service centres, service rate of service 

centre, arrival rate of requests at service centre, umber of 

servers in service centres, routing procedure of requests, 

number of request circulating in the system, physical 

resources available  system workloads, and also network 

topology.  

This approach is for performance modeling of UML 

software architectures. It considers annotations based on the 

UML Performance Profile, and derives a performance model 

based on Queuing Network. Performance evaluation of the 

QN by efficient algorithms provides a set of steady-state 

performance indices that characterize the software system 

behavior. Afterwards, these results are reported back in the 

UML software specification model. They are reported as 

tagged values in the diagrams.  Figure 2 represents mapping 

between UML and performance model elements. 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.68         e-ISSN: 2251-7545 

 

452 

 

 
Figure 2: Mapping Between UML and Performance Model Elements [1]. 

 

Figure 4 shows an example of annotated Deployment and 

Activity diagram. Each node represents a processor with the 

characteristics described with the tagged values. 

The QN model of Figure 7 is an example of a network 

derived from the Deployment and Activity diagrams of Figure 

3, assuming that the Activity diagram is associated to an actor 

stereotyped as <<OpenUser>>. 

 
Figure. 3: Corresponding Open QN of annotated Deployment and Activity 

diagrams [1]. 

 

In this example, there is only one job class, which 

corresponds to the only actor in the UML model. The QN is 

made of four service centers S1,.., S4 which correspond to the 

four resources represented in the Deployment diagram. In this 

diagram, S1 corresponds to the “Proxy Server” node, S2 

corresponds to the “File Server” node, S3 corresponds to the 

“Workstation” node and S4 corresponds to the “Backup 

Server” node. The topology of the QN is derived from the 

Activity diagram. Each UML transition from activity i to 

activity j is mapped into an edge from server Si  to server Sj. 

The service rates µ1,..,µ4 are derived from the PArate tags 

of the Deployment diagram.  

 

 
Figure 4: Example of annotated Deployment (above) and Activity (below) 

diagrams [1]. 

 

The analysis of the product-form QN of Figure 3 provides 

a set of average performance indices that include mean 

number of requests, component utilization and throughput and 

average response time. Table I shows some numerical results 

for the specified set of parameters value, for each system 

component.  

 
TABLE I 

Performance Results for the QN of Figure 3: Mean number of Customers (Ni), 
Utilization (Ui), Throughput (Xi), and and Mean Response Time (Ri) [1]. 

 
 

In [4], another approach based on queuing networks 

models for performance prediction of software systems at the 

software architecture level, specified by UML. In this 

approach, attributes considered for performance evaluation are 

Range of number of clients accessing the system, average 

think time of each client, number of layers in the software 

system, relationship between the machines and software 

components,  number of CPUs and disks on each machine, 

thread limitation, uplink and downlink capacities of the 

connectors connecting machines running adjacent layers of the 

system, size of packets of the links, service time required to 

service one request by a software layer, forward transition 

probability, rating factors of the CPU and the disks of each 

machines in the system. 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.68         e-ISSN: 2251-7545 

 

453 

 

A network-based video server system, where a user 

requests video frames from a video server through a network 

connection is presented as a case study for this approach. 

 
Figure 5: Annotated Use Case diagram [4]. 

 

Figure 5 represents an annotated Use Case diagram. There 

are two actors, User and Time respectively. The first actor 

(User) represents an open population of requests. It is 

exponentially distributed interarrival time with mean of 8 time 

units. The second actor (Time) represents a fixed population of 

10 requests which continuously circulate through the system; 

An exponentially distributed amount of time outside the 

system is spent for each request. Its mean is 10 time units, 

before interacting again. Actor User represents the requests 

which are generated by users requesting videos from the video 

server. Actor Time represents periodic updates sent by the 

video server to the player software on the client workstation. 

Figure 6 shows the corresponding QN for Show Video 

Activity diagram. 

 
Figure 6: QN for the Show Video Activity diagram [4]. 

 

An algorithm for automatic translation of annotated UML 

specifications into multiclass QN performance models is 

developed. This approach is one of the most comprehensive 

approaches which considers both machine-based and also 

user-based parameters in performance evaluation.  

In [5], authors modeled layered software system as a 

closed Product Form Queuing Network (PFQN) and solve it 

for finding performance attributes of the system. The 

attributes considered in this approach is similar to the 

attributes of [4]. 

IV. PETRI NET-BASED APPROACH  

 Similar to the previous section, many models which are 

using Petri nets for modeling performance of a distributed 

software system are developing algorithms for translation 

from UML activity diagrams to Petri nets. In [10], The UML 

Profile for Schedulability, Time Specification and 

Performance allows the specification of quantitative 

information converts to the UML model directly. 

 In [7], authors focused on activity diagrams to translate 

them into GSPN models. They developed stochastic Petri nets 

model from UML activity diagrams. The attributes they 

considered for performance evaluation are routing rate, action 

duration, system response time. In [8], performance evaluation 

model is developed for Agent-based system using Petri net 

approach. In this model, system load, system delays, system 

routing rate, latency of process, and CPU time are considered 

for performance evaluation. This approach is integrated in the 

early stages of the software development process. In this way, 

it is possible to predict the behavior without the need of 

carrying out the complete implementation phase. 

 In this method, first system is modeled using with pa-

UML diagrams.  Afterwards, state transition diagram of the 

system is created using this model. Figure 7 shows the state 

transition diagram for the user. 

  
Figure 7: State transition diagram for the user [8]. 

 

 Petri nets used to model these state transitions because of 

its significant capabilities. There are also well-known analytic 

techniques to study system performance in stochastic Petri net 

models. Figure 8 shows user Petri net component model of the 

system. 

 
Figure 8: User Petri net component [8]. 

 
In [10], network time is the only attribute which is 

considered for performance evaluation of Internet based 
software retrieval systems using Petri nets. Finally in [9], 
Routing rate, action duration, and system response time are 
considered to translate UML activity diagram into stochastic 
Petri net model that allows computing performance indices. 
They have described the kind of annotations suitable to model 
performance requirements in the context of Activity Diagrams 
and translation algorithm of them. 



                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.68         e-ISSN: 2251-7545 

 

454 

 

V. CONCLUSION AND FUTURE WORKS  

One of the most important and essential attributes of 
measurements for the quality of service of distributed software 
is performance. Performance models can be applied at early 
phases of the software development cycle. They help to 
characterize the quantitative behavior of software systems.  

Parameters models for performance evaluation are mostly 
machine based such as CPU usage, Network time, RAM size, 
message size. These models are implemented at the early stage 
of the software life cycle. Among the papers reviews in this 
research, [4] is one of the most comprehensive approaches 
which considers both machine-based and also user-based 
parameters in performance evaluation.  

End users and client parameter for performance evaluation 
are not covered in most of other modeling approaches. In terms 
of end users, lots of uncertain and imprecision parameters 
exist. Hence, uncertainties and imprecision of parameters 
should also be considered.  

The future research in the field of performance analysis for 
distributed software systems could be based on developing 
hybrid models which capture user’s decision variables that 
make system performance evaluation to be more users driven. 
In this way, it will be a complement to the existing models 
which are mostly are based on machine parameters. 

REFERENCES 

[1] S. Balsamo, R. Mamprin, M. Marzolla, “Performance Evaluation of 
Software Architectures with Queuing Network models,” 2004, Proc. of 
ESMc'04.  

[2] Idri, A.; Abran, A.; "A fuzzy logic based set of measures for software 
project similarity: validation and possible improvements," Software 
Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh 
International , vol., no., pp.85-96, 200. 

[3] Omitaomu A. Oluwafemi and Adedeji Badiru, 2007. “Fuzzy Present 
Value Analysis Model for Evaluating Information System Projects. 
Published in the Engineering Economist, " Vol. 52, Issue 2, pp 157 – 
178. 

[4] Simonetta Balsamo and Moreno Marzolla, 2005."Performance 
Evaluation of UML Software Architectures with Multiclass Queueing 
Network Models", WOSP’05. 

[5] V. S. Sharma, P. Jalote, and K. S. Trivedi, "Evaluating performance 
attributes of layered software architecture," in Component-Based 
Software Engineering.    Springer Berlin / Heidelberg, 2005, vol. 
3489/2005, pp. 66-81. 

[6] Object Management Group. UML profile for schedulability, 
performance and time specification. Final Adopted Spec. ptc/02-03-02, 
OMG, Mar. 2002. 

[7] J. P. Lopez-Grao, J. Merseguer, and J. Campos, "From UML Activity 
Diagrams To Stochastic Petri Nets: Application To Software 
Performance Engineering," SIGSOFT Softw. Eng. Notes, vol. 29, no. 1, 
pp. 25-36, 2004. 

[8] M. Jose, J. Campose and Eduardo Mena,"Performance Evaluation for 
the Design of AgentBased Systems:A Petri Net Approach," 2000,In 
proceedings of the workshop on Software Engineering and Petri Nets, 
pp 1 – 20. 

[9] J. P. López-Grao, J. Merseguer, and J. Campos, "On the Use of Formal 
Models in Software Performance Evaluation," in Actas de las X 
Jornadas de Concurrencia, Jaca, Spain, 2002, pp. 367-387. 

[10] J. Merseguer, J. Campos, and E. Mena,” Performance analysis of 
internet based software retrieval systems using Petri Nets,” 2001, In 
Proceedings of the 4th ACM international workshop on Modeling, 
analysis and simulation of wireless and mobile systems (MSWIM '01). 

 


