
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

467

Security Verification Simulator for Fault Analysis Attacks

Masaya Yoshikawa, Hikaru Goto

Dept. of Information Engineering

Meijo University

Nagoya, Japan

Abstract- The advanced encryption standard (AES) is the most

popular encryption standard in the world. Although the AES

algorithm is theoretically safe, it has been recently reported

that confidential information could be illegally specified when

the AES algorithm is used in electronic circuits. In particular,

the menace posed by fault analysis attacks has become

extremely serious. This study develops a software simulator to

evaluate the vulnerability of a cryptographic circuit against

fault analysis attacks in which multiple analytical methods are

combined. Simulation results proved the validity of the

proposed simulator.

Keywords-Software simulator, Security verification, Fault

analysis attacks, Tamper registance, Cryptographic circuit

I. INTRODUCTION

Credit cards and electronic identification devices use
cryptographic circuits to protect confidential information,
such as monetary and personal identifiable information.
These cryptographic circuits use encryption standards, the
theoretical safety of which has been sufficiently verified.
Although the encryption standards are theoretically safe, it
has been recently reported that confidential information
could be illegally specified when the encryption standards
are used in electronic circuits. In particular, the menace
posed by fault analysis attacks[1]-[15] has become extremely
serious. Fault analysis attacks intentionally generate
operation errors during the encryption processing and
illegally obtain confidential information by pairing an
incorrect cryptogram and a correct cryptogram.

Several methods have been proposed for fault analysis
attacks. The advanced encryption standard (AES) is the most
popular encryption standard in the world. To address fault
analysis attacks against AES, researchers have proposed a
fault analysis against the key scheduling part and a fault
analysis that is based on the estimation of the differences
among multiple errors. Therefore, it is important to evaluate
the vulnerability of a cryptographic circuit against fault
analysis attacks during the circuit's design stage.

The present study develops a simulator to evaluate the
vulnerability of a cryptographic circuit against fault analysis
attacks in which multiple analytical methods are combined.
In the analytical methods that have been previously reported,
because the types of information used for analysis differ
from each other, the bytes of a secret key, which is intended
to be derived, also differ from each other. To improve
analytical accuracy, the proposed simulator introduces a new

hybrid method that pays attention to the key byte location
that is to be derived. The present study also verifies the
validity of the proposed simulator by performing several
evaluation experiments.

II. ADVANCED ENCRYPTION STANDARD (AES)

AES consists of 128-bit block ciphers, in which a round
is composed of SubBytes, ShiftRows, MixColumns, and
AddRoundKey processes, and in which data are transformed
by repeating the round processing multiple times. The
number of rounds is determined according to the key length.
The present study adopts the key length of 128 bits, which is
a key length that is most often used. In this present case, 10
rounds are used. MixColumns is omitted only at round 10,
the final round. For the round processing, the key values
used at each round are repeatedly calculated using the
KeySchedule process. SubBytes is used for numeric
transformation in the form of a byte unit. ShiftRows is used
for the shift of a byte location.

III. PROPOSED SIMULATOR

Fault analysis uses the results obtained by incorrect
encryption due to an operation error (hereinafter referred to
as a fault) during the encryption processing. A fault can be
realized by forcibly changing the intermediate value during
the encryption processing. When the intermediate value is
changed, the subsequent calculation results differ from the
normal results; consequently, the cryptogram, which is the
final output, differs from the normal cryptogram. Using the
cryptogram that has been output due to the fault and the
normal cryptogram, a secret key is analyzed, which is the
most important element in the cipher.

As shown in Fig.1, AES encryption can be divided into
the cryptogram generation and the key scheduling sections.
Therefore, in fault analysis against AES, different analytical
methods are used, depending on the cryptogram generation
section or the key scheduling section in which a fault is to be
generated. In the proposed simulator, a hybrid analytical
method is introduced in which two different fault analyses
are combined.

A. Fault analysis against the key scheduling section

Fault analysis against the key scheduling section
(hereinafter referred to as key analysis) consists of three
steps, (a), (b), and (c), which are explained below.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

468

Figure 1 Example of AES encryption

(a) Fault generation and propagation
Key analysis generates a fault as it generates round key 9

and analyzes round key 9. The key value, which has changed
due to a fault being mixed into certain bytes of the round key
9, is used for the subsequent calculation and affects the
values of other bytes. Actually, the values of round keys 9
and 10 are varied from the normal key values and the
cryptogram using the varied key values is also varied. Figure
2 shows the generation processes of round keys 9 and 10 in
the key scheduling section.

A block, consisting of four rows and four columns
surrounded by a square (since each row and column is a byte,
the block is 16 bytes), expresses a round key. For example,
when a fault occurs at the first row and the first column of
round key 9 (the top left byte is defined as being at the 0th
row and 0th column), the results of the fault propagation are
exhibited as the shaded area.

Figure 2 Example of generation processes of round keys 9
and 10 in the key scheduling section

Here, a fault that has passed through a key substitution is

expressed in the horizontal line and a fault that has not
passed through a key substitution is expressed in the oblique
line. This differentiation is required for Step (b), type
classification.

(b) Type classification
Based on the results of the fault propagation obtained in

Step (a), type classification is performed. Figure 3 shows the
results of type classification of the example in Step (a) and
the correspondence table. The type classification procedure
uses the following steps: (1) the type of a fault (blank or
oblique line) at round key 9 is confirmed; its location is the
same as that of the block for type classification; (2) the type
of a fault (blank, oblique line, horizontal line, or oblique line
+ horizontal line) of the corresponding block at round key 10
(a block with the same number in this figure) is confirmed;
and (3) the confirmed type of a fault is compared with the
correspondence table in order to perform type classification.

(1) Results of type classification in Step (a)

(2) Correspondence table

Figure 3 Results of type classification of the example in Step
(a) and the correspondence table

(c) Application of attack rules
The type classification results obtained in Step (b), a

cryptogram, in which a fault is mixed, and a normal
cryptogram were used to derive the value of round key 9. In
actual attacks, it is difficult to generate more than two faults
in the same row. The proposed simulator performs an

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

469

analysis, except for cases where more than two faults are
generated in the same row. In the proposed simulator, five
analysis (attack) rules are applicable.
Rule1. When types A and B exist in the same row, the fault

value of the row can be obtained.
Rule2. When the fault value of a certain row is already

known, and type A exists in the upper row, the key
value at the third column in the row, where the fault
value is already known, can be obtained.

Rule3. When types A and D (or F) exist in the same row,
and the key value of the row is already known, the
value of a polynomial used in the bytes of the row can
be obtained.

Rule4. When two already-known polynomials exist in the
same row, the key value or the exclusive disjunction of
the key value can be derived by calculating the
exclusive disjunction of these polynomials.

Rule5. When the key value at the third column in a certain
row is unknown, type A exists in the upper row, and
types A and D (or F) exist in the row where an
unknown key value exists, the unknown key can be
derived by round-robin scheduling (256 ways).

B. Fault analysis against the cryptogram generation

section

This analysis used an analytical method that is applicable
to multiple faults (hereinafter referred to as finite difference
analysis). Finite difference analysis can obtain information
about a secret key by estimating the differences among the
faults generated in the cryptogram that has been output. This
section explains the principle of finite difference analysis.

1) Fault occurrence point
Finite difference analysis defines the time of inputting

round 10 as the fault occurrence point and assumes that
multiple faults occur in both the cryptographic intermediate
value during the processing and in the key value. Figure 4
shows a fault model at the time of inputting round 10. As
shown, Error D expresses the fault value that occurred in the
cryptographic intermediate value, and Error K expresses the
fault value that occurred in the key value.

2) Estimation of difference
The difference at every error byte is estimated based on

the cryptogram containing a fault that has been output in the
fault model, shown in Fig.4, and the value obtained by
performing exclusive disjunction on the normal cryptogram.
Three differences (differences A, B, and C) are generated
from a one-byte error. The estimation methods of these
differences are explained in (i), (ii), and (iii), respectively.

(i) Estimation of difference A
Difference A is defined as a difference in the case where

fault values, which have passed through the SubBytes
process, are lined up in a row and a fault value exists at the

byte of the right endpoint in a row just below the row in
which the fault values are lined up.

Difference A is generated when a fault occurs in the
rightmost column of the key value. Since the average of the
fault values that have passed through the SubBytes process is
obtained by round-robin scheduling (from 0 to 255), the
average of the hamming weights is 4. Moreover, a high
possibility exists that the hamming weight of a fault value,
which has not passed through the SubBytes process, is below
2. These characteristics are used to estimate difference A.
When one of the following three conditions is satisfied, a
difference is judged as difference A:

Figure 4 Example of a fault model at the time of inputting
round 10

Condition(a). Fault values exist in an entire row and

their hamming weights are above 3. Moreover, the
hamming weight of a fault value at the right endpoint in
a row just below the entire row is below 2.

Condition(b). More than three fault values exist in a row
and the hamming distances between these fault values
are more than 3. Moreover, the hamming weight of a
fault value at the right endpoint, in a row just below the
row in which more than three fault values exist, is
below 2.

Condition(c). Two different fault values exist in an entire
row and the hamming distance between these different
fault values is below 2. Moreover, the hamming weight
of one of these different fault values is above 3 and the
hamming weight of a fault value at the right endpoint,
in a row just below the row in which two different fault
values exist, is below 2.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

470

Condition (b) is established on the assumption that

difference A and difference C occur at the same time.
Condition (c) is established on the assumption that difference
A and difference B occur at the same time. Figure 5 shows
examples of differences that satisfy each condition. In this
figure, all the values are expressed in hexadecimal numbers.
The judgment method mentioned above cannot be used when
other multiple differences occur in a row where fault values,
which have passed through the SubBytes process, are lined
up.

(1) Example of condition (a)

(2) Example of condition (b)

(3) Example of condition (c)

Figure 5 Examples of differences that satisfy each condition
regarding the estimation of difference A

(ii) Estimation of difference B
The estimation of difference B is performed after

removing difference A from the differences that occur
between a normal cryptogram and a cryptogram in which the
faults are mixed. When multiple fault values other than 00
are lined up in a row, these fault values are judged as
difference B. Difference B occurs when a fault is generated
in a row other than the rightmost column of the key value.
When the numbers of bytes used to judge difference B are
different from each other, the following two conditions are
used for judging difference B:

Condition(a). When more than two fault values are

continuously generated from the rightmost column in a
row and the hamming weight of the leftmost fault value
is below 2, the leftmost fault value is judged as
difference B.

Condition(b). When the hamming weight of the leftmost
fault value in condition (a) is above 3, all the fault
values that are lined up are judged as difference B.

Condition (b) is established on the assumption that

difference B and difference C occur at the same time. Figure
6 shows examples of differences that satisfy each condition.

(1) Example of condition (a)

(2) Example of condition (b)

Figure 6 Examples of differences that satisfy each condition
regarding the estimation of difference B

(iii) Estimation of difference C
The estimation of difference C is performed after

removing difference A and difference B from the differences
that occur between a normal cryptogram and a cryptogram in
which the faults are mixed. After removing difference A and
difference B, all the remaining differences can be considered
as difference C. However, there is a possibility that
difference A and difference B are incorrectly estimated. To
avoid this, the following differences are not judged as
difference C:

Condition(a). When a fault value, which has not passed

through the SubBytes process of difference A, and an
existing byte are superposed.

Condition(b). When a difference is adjacent to difference
A.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

471

Condition(c). When a difference and the byte of a fault
value, which has passed through the SubBytes process
of difference A, are superposed.

Condition(d). When the hamming weight of a fault value
is small.

3) Calculation of key value candidates and the selection

of key values
The candidates for key values are calculated using

difference A and difference C obtained in Section (2). For
difference A and difference C, the analytical methods
proposed by Chen et al. [1] and Giraud [2] are used,
respectively. The candidates for key values that are obtained
include candidates that are obtained due to incorrect
difference estimations. Therefore, the key values are selected
from the candidates that are obtained based on the ratio of
the number of key values being candidates to the number of
key values without being candidates.

C. Hybrid analysis

The analytical methods described in Sections 3.1 and 3.2
do not always derive all the key values (16 bytes). In the
analytical method described in Section 3.1, the number of
derived keys changes according to the fault location. Under
the condition that not more than two faults occur in the same
row, keys with up to 10 bytes can be derived. However, key
byte locations that cannot be derived at any fault location
also exist. In the analytical method described in Section 3.2,
almost all the key values can be derived when approximately
200 cryptograms are used. However, all the key values are
not always derived.

The proposed simulator pays attention to the derived key
byte locations and introduces a hybrid fault analysis that can
complement the key values using key analysis, which could
not be derived using finite difference analysis. Figure 7
shows the configuration of the proposed simulator.

As shown, calculation A of a key value candidate
expresses the calculation of a key value candidate using
difference C, and calculation B of a key value candidate
expresses the calculation of a key value candidate using
difference A.

Figure 7 Configuration of the proposed simulator

IV. EVALUATION EXPERIMENTS

A. Experimental conditions

In order to evaluate the proposed simulator, we have
conducted several experiments. In the experiments, a
conflation method was used as the configuration method for
SubBytes transformation in AES. Table 1 shows the detail of
the experimental conditions.

TABLE I. EXPERIMENTAL CONDITIONS

Name Value

Key length 128 bit

Block length 128 bit

Key value Constant

Input plain text Random

Fault location Random

Fault probability 30%-70%

The number of Cipher text 200

B. Evaluation of the hybrid analytical method

In order to verify the key analysis, we conducted the
several simulations using the key analysis. Figures 8 and 9
show the results. As shown in these figures, the number of
derived keys changes according to the fault locations.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

472

Figure 10 shows the number of derived keys obtained
using the hybrid analytical method that was newly
introduced in the proposed simulator and the number of
derived keys obtained using only finite difference analysis.
In this figure, the vertical axis represents the number of
derived keys and the horizontal axis represents the number of
simulations. As shown in Fig.10, the number of derived keys
was larger when the hybrid analytical method was used than
when the finite difference analysis was used.

Figure 8 Result of three fault locations

Figure 9 Result of four fault locations

Figure 10 The number of derived keys obtained using the
proposed method

This means that the key analysis could complement the

key values that could not be derived using the finite
difference analysis. Thus, a hybrid analytical method that
paid attention to the derived key byte locations could
improve the analytical efficiency.

There was a case where the difference in the number of
derived keys was small when comparing the results of the
hybrid analytical method and the finite difference analysis.
Most likely the reason for this was that a condition existed in
the key analysis under which the key byte locations could not
be derived if more than two faults occurred in the same row.

V. CONCLUSION

The present study developed a new simulator that used a
hybrid analytical method in which finite difference analysis
and key analysis were hierarchically combined. The
proposed simulator paid attention to the byte locations of the
keys that could be derived using both analyses so the
analytical accuracy was improved. Evaluation experiments
confirmed that the proposed hybrid analytical method could
complement two analytical methods (finite difference and
key analyses), which were the bases of the proposed method.

In the future, we will examine a method to estimate the
key values that could not be derived using the proposed
method.

ACKNOWLEDGMENT

This study was supported by Japan Science and
Technology Agency (JST), Core Research for Evolutional
Science and Technology (CREST).

REFERENCES

[1] C.-N. Chen, S.-M. Yen,"Differential fault analysis on AES key

schedule and some countermeasures", Proc. 8th Australasian Conf.
Information Security and Privacy (ACISP2003), vol.2727, pp.118–
129, 2003

[2] C.Giraud,"DFA on AES", Proc. 4th Int. Conf. AdvancedEncryption
Standard-AES (AES 2004), vol.3373, pp.27–41,2005.

[3] S.S.Ali, D.Mukhopadhyay, "A Differential Fault Analysis on AES
Key Schedule Using Single Fault", Proc. of 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp.35-42, 2011.

[4] Chong Hee Kim, J.J.Quisquater, "Faults, Injection Methods, and
Fault Attacks", IEEE Design & Test of Computers, Vol.24, No.6,
pp.544-545, 2007.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.71 e-ISSN: 2251-7545

473

[5] Gaoli Wang, Shaohui Wang, "Differential Fault Analysis on
PRESENT Key Schedule", Proc. of 2010 International Conference on
Computational Intelligence and Security (CIS), pp.362-366, 2010.

[6] Wei Li, Dawu Gu, Yong Wang, Juanru Li, Zhiqiang Liu, "An
Extension of Differential Fault Analysis on AES", Proc. of Third
International Conference on Network and System Security (NSS),
pp.443-446, 2009.

[7] P.Maistri, R.Leveugle,"Double-Data-Rate Computation as a
Countermeasure against Fault Analysis", IEEE Transactions on
Computers, Vol.57, No.11, pp.1528-1539, 2008.

[8] P.Dusart, G.Letourneux, O.Vivolo, "Differential fault analysis on
AES", Proc. First Int. Conf. Applied Cryptography and Network
Security (ACNS 2003), vol.2846, pp.293–306,2003.

[9] Li Yang, K.Ohta, K.Sakiyama, "New Fault-Based Side-Channel
Attack Using Fault Sensitivity", IEEE Trans. on Information
Forensics and Security, Vol.7, Issue 1, Part 1, pp.88-97, 2012.

[10] Z.Wang, M.Karpovsky, A.Joshi, "Secure Multipliers Resilient to
Strong Fault-Injection Attacks Using Multilinear Arithmetic Codes",

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp.1-
13, 2011.

[11] H.Li, S.Moore, "Security evaluation at design time against optical
fault injection attacks", IEE Proc. on Information Security, Vol.153 ,
Issue 1, pp.3-11, 2006.

[12] A.P.Fournaris, "Fault and simple power attack resistant RSA using
Montgomery modular multiplication", Proc. of IEEE International
Symposium on Circuits and Systems, pp.1875-1878, 2010.

[13] A.Pellegrini, V.Bertacco, T.Austin, "Fault-based attack of RSA
authentication", Proc. of Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp.855-860, 2010.

[14] JeaHoon Park, SangJae Moon, DooHo Choi, YouSung Kang,
JaeCheol Ha, "Fault attack for the iterative operation of AES S-Box",
Proc. of 5th International Conference on Computer Sciences and
Convergence Information Technology, pp.550-555, 2010.

[15] K.J.Kulikowski, Wang Zhen, M.G.Karpovsky, "Comparative
Analysis of Robust Fault Attack Resistant Architectures for Public
and Private Cryptosystems", Proc. of 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp.41-50, 2008.

