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Abstract—Most modern programming languages support multiple 

programming paradigms. For example, C++ supports procedural and 

object-oriented programming. Java supports mostly object-oriented 

programming, though one could stretch its features to write procedural 

programs. Languages like Ruby Python, Groovy, and Scala, among 

others, support functional programming, procedural programming, and 

object-oriented programming. Our interest is in examining the features 

pertaining to functional programming and object-oriented programming. 

Specifically, out interest is in the correspondence between closures in 

functional paradigm and objects. In this paper we show that closures and 

subsumed by objects. We demonstrate subsumption using structural 

analysis. 
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I. INTRODUCTION  
 

Earlier programming languages were designed to support 

specialized programming paradigms. For example, LISP was 

designed to implement functional programming, while C 

supported procedural style and Prolog supported logic 

programming. Many languages designed since 1980s support 

multi-paradigm programming. For example C++ supports 

procedural and object-oriented programming. While Java has 

a much more aligned with object-oriented programming 

compared with C++, it is possible to write procedural style 

programs with Java. Modern languages like JavaScript, Ruby, 

Python, Scala, Groovy, etc. support multiple paradigms. One 

can write procedural, functional and object-oriented programs 

in modern languages. 
 

It has been established that object-oriented designs and 

programs are needed to tackle the complexity of modern 

software. Object-oriented design lends itself to clean 

separation so of concerns, allocation of responsibilities and 

structural decomposition of software to ensure maintainability 

and extensibility [1,2,3]. The main idea with object-oriented 

design is to identify key abstractions and their relationships, 

including subtypes besides other relationships such as 

associations, etc. There is a vast body of knowledge 

containing patterns and principles [1,4] that designers can 

utilize to arrive at object-oriented designs that are efficient and 

robust. 
 

Though functional programming paradigm is old, there is a 

renewed interest in functional programming. The functional  

 

 

paradigm strives for decomposition of software into set of 

functions. Functions in the functional paradigm are functions 

in the mathematical sense – they map values from a domain to 

a range. The domain can be formed using Cartesian products 

of other domains. The distinguishing feature of functions is 

they return a single value for the given inputs and do not cause 

side effects on the parameters. The immutability of parameters 

has sparked renewed interest in modern programming, 

especially for high-performance parallel programming. 

Languages like JavaScript, Ruby and Groovy also use 

functional constructs for cleaner and elegant programming 

constructs. 
 

In this paper we specifically examine closures, an 

important construct of functional programming and its 

relationship to objects in a multi-paradigm language. We show 

that objects can be uses to achieve the same functionality of 

closures. Closures have been popular in languages like 

JavaScript, Ruby and Groovy. There was considerable push to 

incorporate closures in Java 7, but was not included. Now, 

there is renewed effort for inclusion in Java 8. We ask the 

question if closures from the functional paradigm provide only 

syntactic sugar in multi-paradigm programming languages. 

 

II. OBJECT-ORIENTED PROGRAMMING  
 

After nearly two decades of pedagogy and construction of 

software based on object-oriented programming (OOP) 

principles, OOP is quite often the programming paradigm of 

choice by default. 
 

The key underpinning of OOP is abstraction of behavior. 
Ensuring that an object represents a single 
abstraction/responsibility [1] moves us towards building 
maintainable software. Behavior is modeled using methods 
that be invoked on objects. Satisfying Single Responsibility 
Principle [1] ensures that methods will be cohesive – that is all 
methods of the class representing the object perform related 
actions. 
 

Encapsulation in OOP ensures that the data needed for 
methods is available for them. This is typically implemented 

using instance data of objects. We give two examples of 
classes in Ruby. 
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class Player class Club 
 

def initialize(name) def initialize(name) 
 

@name = name @name = name 
 

end @players =  [] 
 

def set_club(club) end 
 

@club = club def get_name 
 

end @name 
 

def get_name end 
 

@name def add_player(player) 
 

end @players << player 
 

def get_club end 
 

@club def number_of_players 
 

end @players.length 
 
end end 
 

end 
 

Classes provide the abstraction in OOP. In the above 

example, the Player class provides the abstraction that a player 

has a name and a club. The Club provides the abstraction that 

clubs also have names and a collection of players. In the 

abstraction we have modeled here, a Player can belong to only 

one Club; this is a minor detail that does not affect the topic of 

discussion of this paper. In another object-oriented language 

the structure of the classes would be equivalent. We do not 

have an explicit method to set the name of the player or club 

as the name is associated with the object at construction time 

in the initialize method (aka constructor in Java and C++). 
 

The next key feature of OOP that we need for the purpose 

of discussion in this paper is that of encapsulation. The data 

needed for the behavior is part of the object. In the example 

here the attribute name, denoted @name in Player and Club is 

part of each of the objects and is distinct for each instance. 

Similarly @club is the Club attribute on the player. The 

collection of players needed by Club is part of the Club object. 

Hence it is possible to implement methods number_ 

of_players without passing a collection of Players to a Club 

object. 
 

Subtyping or inheritance is another feature of OOP that we 

need for this paper. Subtypes provide a powerful mechanism 

to not only reuse classes, but to construct programs with 

abstractions and substitute abstractions by subtypes. It suffices 

here to state that subtypes cannot enforce stronger type 

requirements that the types that they extend. They have to 

support Liskov Substitutability Principle [1,5]. 
 

We now define a subtype of a Player called Batsman as 
shown below. In Ruby, type extensions are indicated by “<” 

character. 

 
 

 

class Batsman < Player 
 

attr_accessor :batting_position 
 

def initialize(name) 
 

super(name) 
 

end 
 

end 
 

 

We have introduced a new attribute called batting 

_position that is needed for the Batsman class. Since the 

Player class was more abstract the specific attribute indicating 

where in the batting lineup a player was is irrelevant, but is 

needed for the Batsman abstraction. The attr_accessor is a 

Ruby detail to indicate that batting_position is attribute that 

can be set and queried. 
 

The key thing to note here is that Batsman not just reuses 
the Player abstraction, but is substitutable wherever Player 
abstraction is used. For example, a Batsman object can be 
added to a Club using the add_player method defined in the 
Club class. 
 

 

III. FUNCTIONAL PROGRAMMING  
 

Classical functional programming (FP) is based on and 
derived from Lambda Calculus [6]. It is now a very well 
established fact that Lambda Calculus is equivalent to any 
computable function. Lambda Calculus, originally proposed 
by Alonzo Church [7] is incredibly succinct for its power. It 
has only three constructs 
 

<expression> ::= <name> | <function> | <application> 
 

 

A name is a sequence of non-blank characters. 
 

A function is an abstraction and definition of a function. It 

has two parts, a name and a body, the name is usually a 

variable and body is a lambda expression. 
 

Examples of functions are 
 

λx.x+1 which is the successor function to increment a 

value 
 

λx.x is an identity function 
 
 

Once functions are defined, they can be invoked. 

Invocations are called application in Lambda Calculus. The 

syntax for application is 
 

<application> ::= 
 

(<function expression> <argument expression>) 
 

An example of application is 
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(λx.x+1 2) which will yield 3, since 2 is applied to the 
increment Lambda expression 
 
 

while 
 

(λx.x λa.λb.b) will yield λa.λ b.b, since the λa.λb.b Lambda 

expression is applied to the identity Lambda expression. 
 

Languages like Ruby provide a clean syntax for defining 

Lambda expressions. For example a successor function can be 

created using the following syntax in Ruby 
 

succ = -> x {x + 1} 
 

or 
 

succ = lambda {|x| x + 1} 
 

 

This creates a Lambda expression called succ. The 

application is simply a call on the Lambda expression, using a 

method called call as below:  
succ.call(2) 

 

JavaScript also supports creation of Lambda expressions. Here 

is an example. 
 

function createLambda(){ 
 

function succ(x) { 
 

alert(x+1); 
 

} return succ; 
 

} 
 
The application is simply a function call to the JavaScript 

function that is returned. The example below illustrates it. 
 

var mySucc =  createLambda() 
 

mySucc(2) 
 

 

It should be clear to the discerning reader that such constructs 

can be created even in languages like C using function 

pointers. However, they are very cumbersome. 
 

In Lambda expressions, variables can be bound or free. A 
variable is bound if it is bound in an expression. For example 
in λx.x+1, x is a bound variable as the variable x is bound to 
the Lambda expressionλ.y x+1. However, y is a free variable 
in orλxin.x+y. 
 

The application of functions that have free variables 

present interesting situations. Lambda expressions can be 

created with the free variables frozen to an execution context. 

Such Lambda expressions are called closures. The Ruby 

procedure below creates a Lambda Expression with a free 

variable y. The variable is λxfree.x+y inthatthe Lambda 

Expression createIncrementingProc creates, but is bound to 

the environment or context in which it is created when 

createIncementingProc is called. The Ruby Proc object creates 

a Lambda expression. 

 

def createIncrementingProc(y) 
 

Proc.new {|x| x + y} 
 

end 

 

Now using createIncrementingProc, we can create distinct 
execution environments. inc_by_10 creates a closure λx.x+y 
with the free variable y frozen to 10 and inc_ by_20 
createsλx.x+y,aclosurewith free variable f rozen to 20. 

 

inc_by_10 = createIncrementingProc(10) 
 

inc_by_20 = createIncrementingProc(20) 
 

 
Closure application now requires only value for the bound 

variable xλx.x+yinthe.AsLambdabefore, expression 
application requires calling the method called call 
 

inc_by_10.call(3) 
 

inc_by_20.call(3) 
 

The first call to Lambda expression evaluates to 13, while 

the second to 23. Closures in JavaScript have identical 

behavior, save for the syntax. The same is true for Python and 

other languages. 
 

Closures are quite useful. In languages like Ruby and 

Groovy, they are often used to pass as arguments to control 

structures or iterators. They have also been used as constructs 

for event handling and implementing callbacks. It is quite 

convenient to register a callback closure with a defined 

execution context and the caller need not be aware of the free 

variables in the execution context. 
 

IV. CLOSURES AND OBJECTS 
 

Closures have been used in some languages to also 
implement objects. Our view from application programming is 
opposite. For a programmer, objects are far more sophisticated 
than closures and what can be achieved by closures, can be 
achieved by objects too. We will also see in this section, that 
objects can go beyond closures and also support function 
subtyping. 
 

If closures are dissected, then we see two parts to closures. 

The first part is the execution context where the free variables 

are frozen; for example setting the value of y to 10 or 20 based 

on how createIncrementingProc was called. The second part is 

the Lambda expression itself. While Lambda expressions can 

be replaced by methods. For example, 
 

succ = lambda {|x| x + 1} 
 

is equivalent to 
 

def succ(x) 
 

x + 1 
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end 
 

 

So replacing Lambda expressions by equivalent functions 

or methods is straightforward. We now have to consider 

creation of the execution context for the Lambda expressions 

to implement closures. Object attributes provide a convenient 

and flexible mechanism to provide execution context. We will 

illustrate the idea through an example. 

 

class ClosuresWithObjects def 

initialize(y) 
 

@y = y 
 

end 
 

def call(x) x + 

@y 
 

end 

end 

 
The ClosuresWithObjects class defines a single method 

called invoke which takes the bound variables of the 

createIncrementingProc closure. The free variable y is frozen 

in the initialize function. When an object of 

ClosureWithObjects class is created, the execution 

environment is frozen exactly as in closures. We now examine 

the creation of closures using objects and invocation of 

closures. Closures are created by just instantiating objects, 

unlike calling of procedures in the previous example. 

 

inc_by_10 = ClosuresWithObjects.new(10) inc_by_20 = 

ClosuresWithObjects.new(20) 

 
Now inc_by_10 and inc_by_20 are object instances. 

These instances already have execution context created just 

like in closures. Application of closures is just invocation of 

the call method on these object instances, as below. 

 

inc_by_10.call(3) 
 

inc_by_20.call(3) 
 

 

The behavior of the objects is identical to closures. 

Structurally they are similar, though there are syntactic 

differences between closures and objects. Having 

demonstrated that objects provide behavioral equivalence of 

closures, we will now examine the advantages of using objects 

over closures. There are two significant benefits of using 

objects over closures even when closures are needed. 
 

In the case of closures the execution context is frozen, but 

with objects it is possible to reset or change the execution  

context, which can be convenient in some cases. We simply 
provide a method or methods to modify the execution context. 
For example by adding a set_x method to the 
ClosuresWithObjects, we can set new values of x. This allows 
reuse and/or reconfiguration of closures implemented with 
objects. 
 

A second and more important benefit of implementing 

closures with objects is the support for function subtyping [5]. 

The type of a function can be defined on the basis of the 

domain and range it operates on. If T1 is the type of the 

function that maps from D1 to R1, then we have 

 

T1: D1  -> R1  
A function of type T2 is a subtype of T1 if 

T2: D2 -> R2 such that D1 <: D2 and R2 <: R1 

where <: indicates subtype relationship. 

 

The range types can be covariant with subtyping while the 

domain types are contravariant. These are consistent with 

Liskov Substitutability Principles for objects. Function 

subtyping can be easily implemented by subclassing. 
 

The increment closure maps from float -> int. If we wanted 

a function subtype that incremented from double -> int, then it 

is easily obtained by subclassing and overriding the call 

method. Of course, languages like Ruby support ducktyping, 

covariance of ranges and contravariance of domains are easily 

supported. But statically typed languages like Java and C++ 

can provide this behavior quite easily. 
 

Objects are far more general and powerful than closures. 

Objects can provide the full semantics of closure with the 

extension of providing subtyping of closures and providing an 

execution context that is mutable and not frozen. 
 

However there is interest in modern object-oriented 

programming languages to provide support for Lambdas and 

closures. Some example are Pythton, Ruby, Java 7 that 

provides Lambda and Java 8 is debating inclusion of closures, 

and C++0x has support for Lambda. In our opinion these 

language extensions only provide syntactic sugar without 

really extending the expressive power of the core language. As 

demonstrated, what Lambdas and closures provide, objects are 

capable of providing the same semantics and more. 
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V. CONCLUSIONS  
 

We examined multi-paradigm programming in modern 

languages with the special focus on closures from functional 

paradigm and objects. There is renewed interest in bringing 

closures to Java 8 standard. Our analysis shows that objects 

provide all the semantics of closures and more. Closures, in 

our opinion, provide syntactic sugar, while objects provide 

additional features of resetting or changing execution context 

and function subtyping. 

 

 

REFERENCES 

 

[1] Robert C. Martin, Agile Software Development: Principles, Patterns and 

Practices, Prentice Hall, 2002   
[2] Eric Evans, Domain Driven Design: Tackling Complexity in the Heart 

of Software, Addison-Wesley, 2003   
[3] Grady Booch, Object-Oriented Analysis and Design with Applications, 

Addison-Wesley, 2007  

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 

Design Patterns, Addison-Wesley, 1994  

[5] Benjamin C. Pierce, Types and Programming Languages, MIT Press, 

2002   
[6] Greg Michaelson, An Introduction of Functional Programming Through 

Lambda Calculus, Dover, 2011   
[7] Alonzo Church, The Calculi of Lambda-Conversion, Princeton 

University Press, 1941  


