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Abstract—Music performance conveys profound music 

understanding and artistic expression in musical sound. These 

performance-related dimensions can be extracted from audio and 

encoded as musical expressive features, which is based on a high-

dimensional sequential data structure. In this paper we propose a 

structure learning based method using probabilistic graphical 

models that obtains a hierarchical dependency graph from musical 

expressive features. The hierarchical dependency graph we 

proposed serves as an intuitive visualization interface of the 

internal dependency patterns within feature data series and helps 

music scholars identify in-depthconceptual structures.  
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I. INTRODUCTION 

Music performance conveys profound music understanding 

and artistic expression in musical sound. These performance-

related dimensions can be extracted from audio using various 

signal processing algorithms [1]. In this feature extraction 

process, performance-related information is encoded as musical 

expressive features, which is based on a high-dimensional 

sequential data structure. Currently the analysis of music 

performance features still poseschallenges in both music 

theoretical study and multimedia datasetanalysis.One of key 

challenges in the analysis ofmusical expressive feature lies in 

itscomplex dependency structure. In this paper we introduce the 

hierarchical dependency graph as a visualization tool for the 

internal structures of musical expressive features. These 

hierarchical dependency graphs learned then propose interesting 

musical patterns to music scholars to facilitate in-depth manual 

analysis. 

Graphical analysis has been a long-time tradition in diverse 

areas of music study since antiquity [2]. In fact, the music score 

is developed from a graphical representation of melodic contour 

(as a graph, instead of the more “symbolic” score we use today). 

In modern music theoretic analysis, graphical representations are 

extensively applied. For example, Heinrich Schenker developed 

the analytic graph (which is subsequently called Schenkerian 

analysis graph, see [3] for examples) to encodea hierarchical 

relation of music objects. Model formulations of geometrical 

music models [4] ypically apply a graphical representation to 

describe the complex roles played by elementary music events. 

The common point in these graphical analyses is that the graph 

represents a level of abstraction where themusical connections 

can be observed at a higher level: the graph links provide 

connections to music entities that are not connected otherwise. 

On the other hand, an absence of graphical link in adjacent 

musical features helps to segment music patterns. In this paper 

we extend these concepts of music graphical analysis to the 

analysis tasks of musical expressive features. Instead of encoding 

manually formed structures, we apply structure learning 

algorithms to discover graphical patterns from data series. The 

proposed method serves as a human-data-interaction tool that 

helps music scholars find interesting data patterns.Here the 

proposed framework serves as a formalization interface that 

transforms the feature series (numbers) into a knowledge 

representation format that is more suitable for human-knowledge 

dissemination (graphs).  

Related works on computational analysis of music 

performance are summarized in [5,6]. Compare to these systems, 

our proposed methods provide additional modeling flexibility by 

introduce probabilistic graphical model as pattern analysis tool. 

Related manual analysis methods are also compared in [5,6]. 

Currently human analysis capabilities clearly excel machine 

analysis results in various areas of music theoretic research as 

detailed in [5]. Thus many music scholars repel computational 

approaches [5] and insist on an all-manual approach.Other 

scholars point out the importance of integrating human listening 

capabilities since a matured computational “listening” model is 

not available [6]. Obviously these manual analysis procedures 

also have important limitations such as: 

 Analysis results biased from subjective interpretations 

 Large-scale patterns are not easily identified by manual 

inspection. 

 The data volume can be overwhelming;a moderate task 

usually takes decades to study and analysis. 

The aim of this work is thus to resolve this manual-

computational analysis gap by introducing computational 

elements into existing manual analysis procedures.In designing 

this framework we also consider the compatibility to existing 

working environment of music scholars to ensure an effective 

human-date interaction. Extracting Musical Expressive Features 

from Performance Audio 
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When a matching music score of the performance audio is 

available, the performance-level features are obtained by 

comparing the score with the audio. First we perform the score-

audio alignment algorithm as in [1]. This alignment algorithm 

maps the score music event to the time-frequency locations of 

performance audio using dynamic time warping, which 

optimally aligns the variation patterns of pitch and timing 

features obtained from score and audio. The score pitch is 

converted to a fundamental frequency using a temperament 

system which is derived from a reference frequency point   ̅ 

with symbolic pitch value    as: 

  ̅        ̅                                    (1) 

where    is the symbolic pitch value of frequency point   ̅, 

      indicates a temperament function. For equal temperament 

scale   ̅ could be calculated as: 

  ̅         ̅           
     

     ̅  (2) 

The logarithmic value of   ̅ is: 

12 log
 
  ̅       log

 
  ̅        (3) 

Here    and    is specified in MIDI value. Since human 

frequency discernment is most acute at mid-frequency region, 

the reference point       ̅  could be selected at this frequency 

region. In our implementation an initial reference point is 

selected as [69:440Hz]. Then we shift the frequency reference 

point in 160 small steps within 1/6 of a semitone interval and 

find the best reference frequency point   ̅     ̅
 
 where a F0 

alignment cost is minimized. The F0 alignment cost here is a 

weighted sum of frequency mis-alignments    between the audio 

F0 and the score pitch according to the temperament grid as:  

 (   ̅)  ∑      |  (   ̅)| 
                          (4) 

Here |  (   ̅)|  denotes the frequency distance of  th 

alignment event when the reference point shift is    ̅. The small 

variation    ̅ is incorporated into the reference pitch to shift the 

temperament grid so the    values are changing with    ̅ . The 

weights       are based on the frequency discrimination model 

as introduced in [1] and     is the F0 of of  th alignment event. 

Larger      s are assigned for higher frequencies (especially for 

frequencies higher than 2kHz) since human can discern 

frequency better at these frequencies. Using the optimal 

reference frequency point   ̅     ̅
 
 where the alignment result 

is minimized, we can calculate the pitch deviation of each music 

event by comparing the audio pitch and the score pitch.  The 

pitch deviation (P) of music event    in the units of cents (A cent 

represents 1/100 of a semitone) is calculated as: 

             
  (  ̅ 

 
)

 ̅ 
                        (5) 

    The score-audio alignment algorithm also provides score-

aided music event segmentation functionalities.  For monophonic 

music the segmentation results provide the onset and offset of 

each music events. For polyphonic music the segmentation 

results further group sonic partials into instrument tracks. For 

monophonic music or an instrument track of polyphonic music 

the segmentation result is represented as {       |      } , 

where    denotes a music event prescribed by the music score 

and    denotes its onset time location. The expressive timing 

features are obtained by comparing the score timing and the 

performance timing. The time deviation (T) of music event    is 

calculated as the normalized difference between audio onset 

timing       and the interpolated score timing  ̂    : 

              
             

 ̂        ̂    
                            

Here onset time deviation is normalized by the interpolated 

score note duration and the deviation value of previous notes is 

deduced.         denotes the next onset location.        can be 

viewed as an indicator of the extension (         ) or 

compression (        ) of the audio segment of current notes. 

From different interpolation settings of score timing this method 

produces an expressive timing hierarchy. If the score timing 

interpolation is based on a long audio segment, macro-scale 

timing is obtained. We can then shorten the interpolation range 

to music phrase or individual meter for a micro-scale analysis. 

Other performance-level feature dimensions including loudness 

(L), timbre (B), articulation (A) and vibrato (V) could be 

obtained using the algorithms as in [1].These algorithms 

arebriefly summarized in Table 1. These feature values are 

quantized to three levels for subsequent analysis. 

II. COMPILING HIERARCHICAL DEPENDENCY GRAPHUSING 

MULTI-SCALING PROBABILISTIC GRAPHICAL MODELS 

A. Discover Patterns from Template Samples 

Suppose the music expressive features are structured as a 

multi-dimensional data sequence as: 
 

  

[
 
 
 
 
 
              

              

      
              

      
              ]

 
 
 
 
 

               

 

where         is the feature dimension index, and   
      is the temporal (time) index. The structure template is 

defined as a sub-matrix of   and represented as : 

                             [

       

   
       

]                              

 

When applied as a shifting template, the structure template 

 draws feature variables from data 

sequence uniformly.Specifically the sample values of a template 

at location       are represented as: 

                                     (9)                    

The resultant sampled template points           is uniformly 

located at sampling points around shifting template location 

      with template size      . This sampled template serves 

as an instance for the template variables. An example of shifting 

templates is illustrated in Fig. 1(a), with            
 .The template samples from multiple sample points are simply 

treated as i.i.d samples. Denoting these samples as 

instantiations   {       } , where          . In this 

setting we only shift the template at temporal (time) direction.  

In this implementation the temporal length   and feature 

depth  have to be limited because the dependency graph based 
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on a        template would contain a matrix of ries. Also the 

computational complexity of structure learning task (PGM 

learning from data) is super-exponential 

  

Feature  Acoustical  

Description 

Musical  

Description 

Feature Extraction Algorithms Typical 

Value 

Pitch  

Deviation 

 

“P” 

The difference 

between the 

performance 

frequency and 

the score 

specified 

frequency 

Pitch 

Bending 

 

 

            

 

 
 

(1) The fundamental frequency (F0) of an audio segment is detected using a pitch analysis 

algorithm. 

(2) When a score is available the score F0 is obtained from the symbolic score value and a 

temperament system; when only performance audio is available F0 is obtained from a 

quantization process. 

(3) The pitch deviation is calculated by comparing the audio F0,  and the score F0, , The 

pitch deviation is calculated in units of cents (A cent represents 1/100 of a semitone.): 

-15 cents  

to 

+15 cents 

Timing 

 

“T” 

The time 

difference of 

musical events 

between the 

score and the 

audio.  

Rubato 

            ̂    

      
           

 ̂       ̂   
 

(1) The audio onset time is detected by applying threshold detection to the audio wave file 

envelope . The score timing is interpreted from an existing score or from rhythmic analysis 

and quantization of the performance. 

(2) The time deviation of onset   is calculated as the difference between audio onset 

timing      and the score timing  ̂   : 

(3) The onset time deviation is normalized by the interpolated score note duration [1]. as: 

From 0.6 

(compres-

sion) to 

1.5 

(extension) 

Auditory 

Loudness 

 

“L” 

The perceptual 

intensity of 

sound   

Dynamic 

Level 

     √∑       
      

 

   
 

     √
 

 
∑      

 

   
 

(1) Calculate the strength of auditory response [1] of an audio segment based on its energy 

distribution in the frequency domain, using a computational auditory model. First the audio 

segment is partitioned into short analysis frames of 20ms. For each analysis frame     , the 

auditory loudness can be approximately evaluated by summing up the auditory responses of 

individual frequency components as: 

where     is the frequency-response weighting obtained from a computational auditory 

model.        is the STFT magnitude, which can also be calculated as the magnitude of 

the spectrum of a time frame centered at time point  .  
(2) Calculate the time average of auditory loudnesses of the short frames within the analysis 

range. Suppose the analysis range is composed of analysis frame 1 to  , the average 

loudness level of this audio section is: 

A dynamic 

range of 30 

dB. 

(depending 

on the 

normali-

zation) 

Timbre 

 

“B” 

The pattern of 

the energy 

magnitude in the 

frequency 

domain  

Sound color  

(bright vs. 

dark) 

     ∑    
      

 

   
  ∑   

      
 

   
⁄  

       
 ∑   

       
    ∑   

           
   

  
            

 

      
            

  

 

(1) Calculate the short time Fourier analysis        , where   is the frequency bin index. 

  is the time frame index.  

(2) The timbre centroid is calculated as the “weight center” of the frequency spectrum of a 

analysis segment as: 

Here the timbre centroid is normalized by the frequency bin index of fundamental sonic 

partial   . 

(3) Timbre width is defined as the frequency width      required to include a pre-defined 

portion   (with a typical value of 90%) of the total energy. Its integer part       can be 

calculated by adding in frequency components   
           

              until the 

threshold   is surpassed. We also add in a decimal part to improve the sensitivity of      as: 

The timbre width is normalized using the fundamental frequency by: 

Timbre 

centroid 

from 1.2 to 

4.  

Timbre 

width from  

1.5 to 3. 

Attack 

“A” 

onset transient 

characteristics  

hard / soft, 

sharp / dull 

The attack feature is calculated as the ratio of the energy content of the first 1/3 of the note 

duration and the energy content in the latter 2/3’s of the note duration.  

from 0.5 to 

3.  

Vibrato 

 

“V” 

The amplitude 

and frequency 

modulation 

inside a musical 

note 

shallow/wide

, rapid/slow 

(1) Perform vibrato recognition using the algorithms as in [1]. 

(2) A band-pass filter is implemented to extract a single sonic partial as a quasi-

monochromatic componentfrom the complex harmonic sound. 

(3) Amplitude and frequency modulation components are extracted from quasi-

monochromatic components using analytic signal methods. 

(4) The AM/FM modulation depth (AMD/FMD) is calculated as the average peak/valley 

distance in the amplitude and frequency modulating components. AMD represents the 

“vibration” of the amplitude envelope. FMD is the average pitch deviation. 

AMD from 

0.1 to 0.4. 

FMD from  

10 Hz to 40 

Hz. 

 

Table 1: Summary of the definitions and feature extraction algorithms for musical expressive features. For the feature dimensions of 

timbre and vibrato, multiple feature descriptors are implemented. 
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to the number of variables in the template.The analysis method 

of large-span dependency over the template size is covered in 

Sec. III.B. 

A heuristic search algorithmis applied to find the candidate 

PGM set   {       }for the data  .we compute the score 

for a PGM   as [7]: 

              |  (10) 

The PGM with the highest score in the candidate PGM set is 

selected as the model for data  . 

             |              (11) 

B. Hierarchical Dependency Patterns 

Using the template learning methods in Sec. II we only 

obtain part of the dependency patterns within the structured data 

   because:  

 The non-stationary nature of the original data sequence  . 

Different part of data sequence   can have different 

pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The learned PGM model is just an approximation of the 

dependency structure data. Since it is not a complete 

description of data, other internal structures are also 

possible. 

For example,the dependency pattern contained in          

might be different from the patterns in          . The optimal 

PGM    thus may only capture the pattern in         part of 

all data instances  . The PGM learning algorithm in Sec. III.A 

also does not guarantee to have captured all patterns within 

templates          . 

To enable a more detailed analysis of the data instances  , 

The optimal graphical model   is then fit back to the templates 

by calculating the probability of the data given the optima model. 

Supposethei-th instantiation is denoted as   {           } , 

where {           }  is a vector of the re-organized template 

 
 

Figure 1.  First level structure learning based on probabilistic graphical model (PGM) in the two feature dimensions of pitch deviation (P) and loudness (L). 

(a) template sampling results and (2) PGM Learning and the support regions of PGM model. The green box indicates support regions with high acceptance 

level of ‘PGM 1”, in this case these areas is a perfect pattern. The red box indicate a lower acceptance level of ‘PGM 1’ but still accepted as support region. 

In this case this area contains an imperfect pattern. 

 

 
Figure 2.  Learning hierarchical dependence graph in the deeper levels. The data region in the first level (Figure 1) is divided into pattern region (blue-

yellow data squares) and non-pattern region (white data squares). In (a)-(d) smaller pattern in the pattern region is identified. This second level data region is 

then further split into pattern region (c) and non-pattern region (d). The grey-color square indicate the non-pattern region repeated from level 1 and will not be 

included here. In (e)-(h) smaller patterns in non-pattern region is identified. This second level data region is then split into the second-level pattern region (g) 

and non-pattern region. Note in (g) the gray-color squares indicate the pattern region identical in the first level and not included in this level. 
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sampling variables         . Thus    contains  a  feature  

segment in the original feature sequence.  

 

 

 

  

 
 

Figure 3.  Applying link-strength methods to first level structure learning. (a) Template sampling results. (b) PGM Learning and the support regions 

of PGM model. Here the data point in the pattern only includes the nodes with high-strength links. The latent PGM model is only the significant 

parts of the PGM model learned from the data sequence in (a). (c) is the pattern region for the next level of PGM learning. (d) is the non-pattern 

region for the second level of PGM learning. 

 
 

Figure 4.  Learning hierarchical dependence graph in the deeper levels with link-strength option. The data region in the first level (Figure 3) is 

divided into pattern region (blue-yellow data squares) and non-pattern region (white data squares) and applies to second level of PGM learning. In 

(a)-(d) smaller pattern in the pattern region is identified and only the significant part of the dependency structure is kept. In (e)-(h) smaller patterns in 

non-pattern region is identified with the high-strength linked part circled. This second level data region is then further split into pattern region and 

non-pattern region as (b) >> (c)(d) and (f)>>(g)(h). 

 

 
 

Figure 5.  Simplified pattern masking method. The pattern region is replaced with random numbers (orange data squares in (a)). These random 

numbers erase the dependency structures in these data region. The updated sequence (b) is then applied to another round of PGM learning. 
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The acceptance level of       
   is calculated as the probability 

of observing    given the PGM model   : 

      
          | 

   (12) 

Here     | 
   is calculated using the chain rule as: 

             |          | 
        |      

   

       |           
        |               

        (13) 

                |     

         | 
            |      

   

          |           
   

          |               
   (14) 

      In practical implementation, (17) can be calculated by 

appending evidence (observed nodes) and evaluate the marginal 

probability distributions. We first evaluate       | 
   by use null 

evidence in the inference engineer, and evaluate the marginal 

distribution of     .       |      
   is evaluated by add in 

evidence of a      value, then evaluate the marginal distribution 

of     .  

To discover addtional patterns within the data, we exclude 

the instances with high acceptance level where      
    . 

These data instances with high acceptance level are defined as 

the support region of    here. In Fig. 1. The learned PGM pattern 

is matched to templates ‘S1-1,6,11’. We call the matched parts of 

templates the pattern region of this level. The other part is called 

non-pattern region. The pattern part here provides a contour of 

large-span connections. This method of large-span analysis is 

more flexible than other similarity-based methods by admitting 

latent patterns instead of pattern in the original feature data. 

The remaining instances in both pattern region and non-

pattern regionare applied for another round of PGM learning as 

illustrated in Fig. 2. Here we also introduce the variable template 

size as in Fig. 2(a),(e) for both pattern region and non-pattern 

region at each PGM learning stage. Specifically we discover 

smaller-scale models from both the pattern part and the non-

pattern part of the previous learning task. For pattern regions, the 

smaller patterns learned at the support region contains the more 

important part of a larger pattern.In the non-pattern part, we 

excluded the current model    
by excluding the data instances 

with high acceptance levels. The second round of PGM learning 

would find another model    
 and then its support region.The 

data region is then split into the pattern region and non-pattern 

region in this level. 

In Fig. 3 and 4 we further apply link-strength methods [7] to 

improve the flexibility of learned dependency graph.This link-

strength helps prioritize important dependency structures when 

forming a structure hierarchy. The masking procedure on 

original data is then based on the nodes with high-strength links 

as in Fig. 4. Fig. 5 further illustrates a simplified masking 

method that replaces the pattern region with random patterns.The 

pattern leaning process in Fig. 2 and 3 forms a hierarchical 

dependency graph as illustrated in Fig. 6. Here the template in 

Fig. 6(a) includes 3 consecutive feature values such as ‘A’, 

‘A+1’ and ‘A+2’. Then smaller pattern in (b) is then obtained 

from the pattern regionby applying templates including 2 

consecutive feature values. These patterns form a hierarchical 

dependence graph and are proposed as candidate conceptual 

music models. 

 
(a) 

 
(b) 

Figure 6.  Examples of hierarchical dependency graph obtained from musical 

expressive features of 5 feature dimensions including pitch deviation (P), 
loudness (L), timing (T), timbre (B) and articulation (A). Each feature dimension 

includes feature values from three consecutive notes.  

III. SUMMARY 

In this paper, we introduce hierarchical dependency graph as a 

human-data interface for music expressive feature analysis. The 

hierarchical dependency graph we proposedproposes interesting 

musical patterns and providesaalgorithmic-enhanced working 

environment for music scholars.The long term goal of this 

research is to further improve the automation level and minimize 

user intervention. At current stage this method serves as an 

investigation tool for manual analysis, to speech up the analysis, 

scale up the analysis, and eases the procedure. 
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