
 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

581

Compiling Hierarchical Dependency Graph for Large-

Span Musical Expressive Feature Analysis Using Multi-

Scaling Probabilistic Graphical Models
Ren Gang, Xuchen Yang, Zhe Wen, Dave Headlam, Mark F. Bocko

Dept. of Electrical and Computer Engineering, Edmund A. Hajim School of Engineering and Applied

Sciences, Univ. of Rochester

Dept. of Music Theory, Eastman School of Music, Univ. of Rochester

Rochester, NY 14627, USA

g.ren@rochester.edu, xuchenyang@rochester.edu,zhe.wen@rochester.edu,dheadlam@esm.rochester.edu,

mark.bocko@rochester.edu
Abstract—Music performance conveys profound music

understanding and artistic expression in musical sound. These

performance-related dimensions can be extracted from audio and

encoded as musical expressive features, which is based on a high-

dimensional sequential data structure. In this paper we propose a

structure learning based method using probabilistic graphical

models that obtains a hierarchical dependency graph from musical

expressive features. The hierarchical dependency graph we

proposed serves as an intuitive visualization interface of the

internal dependency patterns within feature data series and helps

music scholars identify in-depthconceptual structures.

Keywords- knowledge engineering; feature analysis; probabilistic

graphical model; music performance analysis

I. INTRODUCTION

Music performance conveys profound music understanding

and artistic expression in musical sound. These performance-

related dimensions can be extracted from audio using various

signal processing algorithms [1]. In this feature extraction

process, performance-related information is encoded as musical

expressive features, which is based on a high-dimensional

sequential data structure. Currently the analysis of music

performance features still poseschallenges in both music

theoretical study and multimedia datasetanalysis.One of key

challenges in the analysis ofmusical expressive feature lies in

itscomplex dependency structure. In this paper we introduce the

hierarchical dependency graph as a visualization tool for the

internal structures of musical expressive features. These

hierarchical dependency graphs learned then propose interesting

musical patterns to music scholars to facilitate in-depth manual

analysis.

Graphical analysis has been a long-time tradition in diverse

areas of music study since antiquity [2]. In fact, the music score

is developed from a graphical representation of melodic contour

(as a graph, instead of the more “symbolic” score we use today).

In modern music theoretic analysis, graphical representations are

extensively applied. For example, Heinrich Schenker developed

the analytic graph (which is subsequently called Schenkerian

analysis graph, see [3] for examples) to encodea hierarchical

relation of music objects. Model formulations of geometrical

music models [4] ypically apply a graphical representation to

describe the complex roles played by elementary music events.

The common point in these graphical analyses is that the graph

represents a level of abstraction where themusical connections

can be observed at a higher level: the graph links provide

connections to music entities that are not connected otherwise.

On the other hand, an absence of graphical link in adjacent

musical features helps to segment music patterns. In this paper

we extend these concepts of music graphical analysis to the

analysis tasks of musical expressive features. Instead of encoding

manually formed structures, we apply structure learning

algorithms to discover graphical patterns from data series. The

proposed method serves as a human-data-interaction tool that

helps music scholars find interesting data patterns.Here the

proposed framework serves as a formalization interface that

transforms the feature series (numbers) into a knowledge

representation format that is more suitable for human-knowledge

dissemination (graphs).

Related works on computational analysis of music

performance are summarized in [5,6]. Compare to these systems,

our proposed methods provide additional modeling flexibility by

introduce probabilistic graphical model as pattern analysis tool.

Related manual analysis methods are also compared in [5,6].

Currently human analysis capabilities clearly excel machine

analysis results in various areas of music theoretic research as

detailed in [5]. Thus many music scholars repel computational

approaches [5] and insist on an all-manual approach.Other

scholars point out the importance of integrating human listening

capabilities since a matured computational “listening” model is

not available [6]. Obviously these manual analysis procedures

also have important limitations such as:

 Analysis results biased from subjective interpretations

 Large-scale patterns are not easily identified by manual

inspection.

 The data volume can be overwhelming;a moderate task

usually takes decades to study and analysis.

The aim of this work is thus to resolve this manual-

computational analysis gap by introducing computational

elements into existing manual analysis procedures.In designing

this framework we also consider the compatibility to existing

working environment of music scholars to ensure an effective

human-date interaction. Extracting Musical Expressive Features

from Performance Audio

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

582

When a matching music score of the performance audio is

available, the performance-level features are obtained by

comparing the score with the audio. First we perform the score-

audio alignment algorithm as in [1]. This alignment algorithm

maps the score music event to the time-frequency locations of

performance audio using dynamic time warping, which

optimally aligns the variation patterns of pitch and timing

features obtained from score and audio. The score pitch is

converted to a fundamental frequency using a temperament

system which is derived from a reference frequency point ̅

with symbolic pitch value as:

 ̅ ̅ (1)

where is the symbolic pitch value of frequency point ̅,

 indicates a temperament function. For equal temperament

scale ̅ could be calculated as:

 ̅ ̅

 ̅ (2)

The logarithmic value of ̅ is:

12 log

 ̅ log

 ̅ (3)

Here and is specified in MIDI value. Since human

frequency discernment is most acute at mid-frequency region,

the reference point ̅ could be selected at this frequency

region. In our implementation an initial reference point is

selected as [69:440Hz]. Then we shift the frequency reference

point in 160 small steps within 1/6 of a semitone interval and

find the best reference frequency point ̅ ̅

 where a F0

alignment cost is minimized. The F0 alignment cost here is a

weighted sum of frequency mis-alignments between the audio

F0 and the score pitch according to the temperament grid as:

 (̅) ∑ | (̅)|
 (4)

Here | (̅)| denotes the frequency distance of th

alignment event when the reference point shift is ̅. The small

variation ̅ is incorporated into the reference pitch to shift the

temperament grid so the values are changing with ̅ . The

weights are based on the frequency discrimination model

as introduced in [1] and is the F0 of of th alignment event.

Larger s are assigned for higher frequencies (especially for

frequencies higher than 2kHz) since human can discern

frequency better at these frequencies. Using the optimal

reference frequency point ̅ ̅

 where the alignment result

is minimized, we can calculate the pitch deviation of each music

event by comparing the audio pitch and the score pitch. The

pitch deviation (P) of music event in the units of cents (A cent

represents 1/100 of a semitone) is calculated as:

 (̅

)

 ̅
 (5)

 The score-audio alignment algorithm also provides score-

aided music event segmentation functionalities. For monophonic

music the segmentation results provide the onset and offset of

each music events. For polyphonic music the segmentation

results further group sonic partials into instrument tracks. For

monophonic music or an instrument track of polyphonic music

the segmentation result is represented as { | } ,

where denotes a music event prescribed by the music score

and denotes its onset time location. The expressive timing

features are obtained by comparing the score timing and the

performance timing. The time deviation (T) of music event is

calculated as the normalized difference between audio onset

timing and the interpolated score timing ̂ :

 ̂ ̂

Here onset time deviation is normalized by the interpolated

score note duration and the deviation value of previous notes is

deduced. denotes the next onset location. can be

viewed as an indicator of the extension () or

compression () of the audio segment of current notes.

From different interpolation settings of score timing this method

produces an expressive timing hierarchy. If the score timing

interpolation is based on a long audio segment, macro-scale

timing is obtained. We can then shorten the interpolation range

to music phrase or individual meter for a micro-scale analysis.

Other performance-level feature dimensions including loudness

(L), timbre (B), articulation (A) and vibrato (V) could be

obtained using the algorithms as in [1].These algorithms

arebriefly summarized in Table 1. These feature values are

quantized to three levels for subsequent analysis.

II. COMPILING HIERARCHICAL DEPENDENCY GRAPHUSING

MULTI-SCALING PROBABILISTIC GRAPHICAL MODELS

A. Discover Patterns from Template Samples

Suppose the music expressive features are structured as a

multi-dimensional data sequence as:

[

]

where is the feature dimension index, and
 is the temporal (time) index. The structure template is

defined as a sub-matrix of and represented as :

 [

]

When applied as a shifting template, the structure template

 draws feature variables from data

sequence uniformly.Specifically the sample values of a template

at location are represented as:

 (9)

The resultant sampled template points is uniformly

located at sampling points around shifting template location

 with template size . This sampled template serves

as an instance for the template variables. An example of shifting

templates is illustrated in Fig. 1(a), with
 .The template samples from multiple sample points are simply

treated as i.i.d samples. Denoting these samples as

instantiations { } , where . In this

setting we only shift the template at temporal (time) direction.

In this implementation the temporal length and feature

depth have to be limited because the dependency graph based

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

583

on a template would contain a matrix of ries. Also the

computational complexity of structure learning task (PGM

learning from data) is super-exponential

Feature Acoustical

Description

Musical

Description

Feature Extraction Algorithms Typical

Value

Pitch

Deviation

“P”

The difference

between the

performance

frequency and

the score

specified

frequency

Pitch

Bending

(1) The fundamental frequency (F0) of an audio segment is detected using a pitch analysis

algorithm.

(2) When a score is available the score F0 is obtained from the symbolic score value and a

temperament system; when only performance audio is available F0 is obtained from a

quantization process.

(3) The pitch deviation is calculated by comparing the audio F0, and the score F0, , The

pitch deviation is calculated in units of cents (A cent represents 1/100 of a semitone.):

-15 cents

to

+15 cents

Timing

“T”

The time

difference of

musical events

between the

score and the

audio.

Rubato

 ̂

 ̂ ̂

(1) The audio onset time is detected by applying threshold detection to the audio wave file

envelope . The score timing is interpreted from an existing score or from rhythmic analysis

and quantization of the performance.

(2) The time deviation of onset is calculated as the difference between audio onset

timing and the score timing ̂ :

(3) The onset time deviation is normalized by the interpolated score note duration [1]. as:

From 0.6

(compres-

sion) to

1.5

(extension)

Auditory

Loudness

“L”

The perceptual

intensity of

sound

Dynamic

Level

 √∑

 √

∑

(1) Calculate the strength of auditory response [1] of an audio segment based on its energy

distribution in the frequency domain, using a computational auditory model. First the audio

segment is partitioned into short analysis frames of 20ms. For each analysis frame , the

auditory loudness can be approximately evaluated by summing up the auditory responses of

individual frequency components as:

where is the frequency-response weighting obtained from a computational auditory

model. is the STFT magnitude, which can also be calculated as the magnitude of

the spectrum of a time frame centered at time point .
(2) Calculate the time average of auditory loudnesses of the short frames within the analysis

range. Suppose the analysis range is composed of analysis frame 1 to , the average

loudness level of this audio section is:

A dynamic

range of 30

dB.

(depending

on the

normali-

zation)

Timbre

“B”

The pattern of

the energy

magnitude in the

frequency

domain

Sound color

(bright vs.

dark)

 ∑

 ∑

⁄

 ∑

 ∑

(1) Calculate the short time Fourier analysis , where is the frequency bin index.

 is the time frame index.

(2) The timbre centroid is calculated as the “weight center” of the frequency spectrum of a

analysis segment as:

Here the timbre centroid is normalized by the frequency bin index of fundamental sonic

partial .

(3) Timbre width is defined as the frequency width required to include a pre-defined

portion (with a typical value of 90%) of the total energy. Its integer part can be

calculated by adding in frequency components

 until the

threshold is surpassed. We also add in a decimal part to improve the sensitivity of as:

The timbre width is normalized using the fundamental frequency by:

Timbre

centroid

from 1.2 to

4.

Timbre

width from

1.5 to 3.

Attack

“A”

onset transient

characteristics

hard / soft,

sharp / dull

The attack feature is calculated as the ratio of the energy content of the first 1/3 of the note

duration and the energy content in the latter 2/3’s of the note duration.

from 0.5 to

3.

Vibrato

“V”

The amplitude

and frequency

modulation

inside a musical

note

shallow/wide

, rapid/slow

(1) Perform vibrato recognition using the algorithms as in [1].

(2) A band-pass filter is implemented to extract a single sonic partial as a quasi-

monochromatic componentfrom the complex harmonic sound.

(3) Amplitude and frequency modulation components are extracted from quasi-

monochromatic components using analytic signal methods.

(4) The AM/FM modulation depth (AMD/FMD) is calculated as the average peak/valley

distance in the amplitude and frequency modulating components. AMD represents the

“vibration” of the amplitude envelope. FMD is the average pitch deviation.

AMD from

0.1 to 0.4.

FMD from

10 Hz to 40

Hz.

Table 1: Summary of the definitions and feature extraction algorithms for musical expressive features. For the feature dimensions of

timbre and vibrato, multiple feature descriptors are implemented.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

584

to the number of variables in the template.The analysis method

of large-span dependency over the template size is covered in

Sec. III.B.

A heuristic search algorithmis applied to find the candidate

PGM set { }for the data .we compute the score

for a PGM as [7]:

 | (10)

The PGM with the highest score in the candidate PGM set is

selected as the model for data .

 | (11)

B. Hierarchical Dependency Patterns

Using the template learning methods in Sec. II we only

obtain part of the dependency patterns within the structured data

 because:

 The non-stationary nature of the original data sequence .

Different part of data sequence can have different

pattern.

 The learned PGM model is just an approximation of the

dependency structure data. Since it is not a complete

description of data, other internal structures are also

possible.

For example,the dependency pattern contained in

might be different from the patterns in . The optimal

PGM thus may only capture the pattern in part of

all data instances . The PGM learning algorithm in Sec. III.A

also does not guarantee to have captured all patterns within

templates .

To enable a more detailed analysis of the data instances ,

The optimal graphical model is then fit back to the templates

by calculating the probability of the data given the optima model.

Supposethei-th instantiation is denoted as { } ,

where { } is a vector of the re-organized template

Figure 1. First level structure learning based on probabilistic graphical model (PGM) in the two feature dimensions of pitch deviation (P) and loudness (L).

(a) template sampling results and (2) PGM Learning and the support regions of PGM model. The green box indicates support regions with high acceptance

level of ‘PGM 1”, in this case these areas is a perfect pattern. The red box indicate a lower acceptance level of ‘PGM 1’ but still accepted as support region.

In this case this area contains an imperfect pattern.

Figure 2. Learning hierarchical dependence graph in the deeper levels. The data region in the first level (Figure 1) is divided into pattern region (blue-

yellow data squares) and non-pattern region (white data squares). In (a)-(d) smaller pattern in the pattern region is identified. This second level data region is

then further split into pattern region (c) and non-pattern region (d). The grey-color square indicate the non-pattern region repeated from level 1 and will not be

included here. In (e)-(h) smaller patterns in non-pattern region is identified. This second level data region is then split into the second-level pattern region (g)

and non-pattern region. Note in (g) the gray-color squares indicate the pattern region identical in the first level and not included in this level.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

585

sampling variables . Thus contains a feature

segment in the original feature sequence.

Figure 3. Applying link-strength methods to first level structure learning. (a) Template sampling results. (b) PGM Learning and the support regions

of PGM model. Here the data point in the pattern only includes the nodes with high-strength links. The latent PGM model is only the significant

parts of the PGM model learned from the data sequence in (a). (c) is the pattern region for the next level of PGM learning. (d) is the non-pattern

region for the second level of PGM learning.

Figure 4. Learning hierarchical dependence graph in the deeper levels with link-strength option. The data region in the first level (Figure 3) is

divided into pattern region (blue-yellow data squares) and non-pattern region (white data squares) and applies to second level of PGM learning. In

(a)-(d) smaller pattern in the pattern region is identified and only the significant part of the dependency structure is kept. In (e)-(h) smaller patterns in

non-pattern region is identified with the high-strength linked part circled. This second level data region is then further split into pattern region and

non-pattern region as (b) >> (c)(d) and (f)>>(g)(h).

Figure 5. Simplified pattern masking method. The pattern region is replaced with random numbers (orange data squares in (a)). These random

numbers erase the dependency structures in these data region. The updated sequence (b) is then applied to another round of PGM learning.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

586

The acceptance level of
 is calculated as the probability

of observing given the PGM model :

 |

 (12)

Here |
 is calculated using the chain rule as:

 | |
 |

 |
 |

 (13)

 |

 |
 |

 |

 |
 (14)

 In practical implementation, (17) can be calculated by

appending evidence (observed nodes) and evaluate the marginal

probability distributions. We first evaluate |
 by use null

evidence in the inference engineer, and evaluate the marginal

distribution of . |
 is evaluated by add in

evidence of a value, then evaluate the marginal distribution

of .

To discover addtional patterns within the data, we exclude

the instances with high acceptance level where
 .

These data instances with high acceptance level are defined as

the support region of here. In Fig. 1. The learned PGM pattern

is matched to templates ‘S1-1,6,11’. We call the matched parts of

templates the pattern region of this level. The other part is called

non-pattern region. The pattern part here provides a contour of

large-span connections. This method of large-span analysis is

more flexible than other similarity-based methods by admitting

latent patterns instead of pattern in the original feature data.

The remaining instances in both pattern region and non-

pattern regionare applied for another round of PGM learning as

illustrated in Fig. 2. Here we also introduce the variable template

size as in Fig. 2(a),(e) for both pattern region and non-pattern

region at each PGM learning stage. Specifically we discover

smaller-scale models from both the pattern part and the non-

pattern part of the previous learning task. For pattern regions, the

smaller patterns learned at the support region contains the more

important part of a larger pattern.In the non-pattern part, we

excluded the current model
by excluding the data instances

with high acceptance levels. The second round of PGM learning

would find another model
 and then its support region.The

data region is then split into the pattern region and non-pattern

region in this level.

In Fig. 3 and 4 we further apply link-strength methods [7] to

improve the flexibility of learned dependency graph.This link-

strength helps prioritize important dependency structures when

forming a structure hierarchy. The masking procedure on

original data is then based on the nodes with high-strength links

as in Fig. 4. Fig. 5 further illustrates a simplified masking

method that replaces the pattern region with random patterns.The

pattern leaning process in Fig. 2 and 3 forms a hierarchical

dependency graph as illustrated in Fig. 6. Here the template in

Fig. 6(a) includes 3 consecutive feature values such as ‘A’,

‘A+1’ and ‘A+2’. Then smaller pattern in (b) is then obtained

from the pattern regionby applying templates including 2

consecutive feature values. These patterns form a hierarchical

dependence graph and are proposed as candidate conceptual

music models.

(a)

(b)

Figure 6. Examples of hierarchical dependency graph obtained from musical

expressive features of 5 feature dimensions including pitch deviation (P),
loudness (L), timing (T), timbre (B) and articulation (A). Each feature dimension

includes feature values from three consecutive notes.

III. SUMMARY

In this paper, we introduce hierarchical dependency graph as a

human-data interface for music expressive feature analysis. The

hierarchical dependency graph we proposedproposes interesting

musical patterns and providesaalgorithmic-enhanced working

environment for music scholars.The long term goal of this

research is to further improve the automation level and minimize

user intervention. At current stage this method serves as an

investigation tool for manual analysis, to speech up the analysis,

scale up the analysis, and eases the procedure.

REFERENCES

[1] G.Ren, J. Lundberg, G. Bocko, D. Headlam, and M. F. Bocko, “What
makes music musical? a framework for extracting performance expression

and emotion in musical sound”, Proceedings of IEEE Digital Signal

Processing Workshop, Sedona, AZ, 4-7 Jan. 2011, pp. 301 – 306.

[2] M.E. Bonds, A History of Music in Western Culture, 3rd ed., Prentice

Hall: Upper Saddle River, NJ, 2009, pp 2-15.

[3] B.M. Ayotte, Heinrich Schenker, a Giude to Research, Routledge: New

York, NY, 2004, pp 5-39.

[4] D. Tymoczko, A Geometry of Music, Oxford University Press: New York,

NY, 2011, pp 63-115.

[5] A. Gabrielsson, "Music Performance Research at the Millennium,"
Psychology of Music, Vol. 31, July 2003, pp. 221-272.

[6] G. Widmer; W. Goebl, Computational Models of Expressive Music
Performance: The State Of The Art, Journal od New Music Research, Vol.

33, 2004, pp. 13-26.

 The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue:

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13],

San Francisco State University, CA, U.S.A., March 2013

Doi: 10.7321/jscse.v3.n3.88 e-ISSN: 2251-7545

587

[7] I. Ebert-Uphoff,LinkStrength Package for Bayesian network

toolboxwww.dataonstage.com/BNT/PACKAGES/LinkStrength/index.htm
.

