
                           The International Journal of Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 3, Special Issue: 

The Proceeding of International Conference on Soft Computing and Software Engineering 2013 [SCSE’13], 

San Francisco State University, CA, U.S.A., March 2013 

Doi: 10.7321/jscse.v3.n3.98         e-ISSN: 2251-7545 

 

 

644 

 

Data Modelling and Calibration using a Two Level 

Hierarchical Bayesian Approach 
 

Maria Jose Marquez 

Advanced Artificial Intelligence 

UNED University 

Madrid, Spain 

mmarquez92@alumno.uned.es 

Luis Manuel Sarro 

Advanced Artificial Intelligence 

UNED University 

Madrid, Spain 

lsb@dia.uned.es

 

 
Abstract— Calibration is nowadays one of the most important 

processes involved in the extraction of valuable data from 

measurements. The current availability of an optimum data cube 

measured from a heterogeneous set of instruments and surveys 

relies on a systematic and robust approach in the corresponding 

measurement analysis. In this sense, the inference of configurable 

instrument parameters, as part of data modelling, can 

considerably increase the quality of the data obtained.  

Any measurement devoted to scientific purposes contains an 

element of uncertainty. The level of noise, for example, 

determines the limit of usability of an image. Therefore, a 

mathematical model representing the reality of the measured 

data should also include at least the sources of noise which are 

the most relevant ones for the context of that measurement.  

This paper proposes a solution based on Bayesian inference 

for the estimation of the configurable parameters relevant to the 

signal-to-noise ratio. The information obtained by the resolution 

of this problem can be handled in a very useful way if it is 

considered as part of an adaptive loop for the overall 

measurement strategy, in such a way that the outcome of this 

parametric inference leads to an increase in the knowledge of a 

model comparison problem in the context of data modelling and 

measurement interpretation.  

The context of this problem is the multi-wavelength 

measurements coming from diverse cosmological surveys and 

obtained using various telescope instruments. As a first step, a 

thorough analysis of the typical noise contributions will be 

performed based on the current state-of-the-art of modern 

telescope instrumentation. A second step will then consist of 

identifying configurable parameters relevant to the noise model 

under consideration. Then, as a third step, a Bayesian inference 

for these parameters estimations will be applied, taking into 

account a proper identification of the nuisance parameters and 

the adequate selection of a prior probability. Finally, a 

corresponding set of conclusions will be derived. 

Keywords—signal; noise; quantum efficiency; count; read 

noise; dark current; nuisance parameteres 

I.  INTRODUCTION  

As indicated in [3], astronomical photometry is about the 

measurement of the brightness of radiating objects in the sky. 

Many factors, such as those coming from the instrument 

limitation, make this area of the science relatively imprecise. 

The improvement in the detectors technology plays a key role 

in the area of optimizing the resulting astronomical 

photometric measurements. In this sense, a signal-to-noise 

ratio capable of being configured as part of an optimization 

framework of the measurement system seems to be a useful 

input.  

Charge-coupled devices (CCDs) constitute the state-of-the-art 

of detectors in many observational fields. Reference [2] 

enumerates the areas involved in the recent advances of the 

CCDs systems, which are:  

 Manufacturing standards that provide higher 

tolerances in the CCD process leading directly to a 

reduction in their noise output.  

 Increased quantum efficiency, especially in the far 

red spectral regions.  

 New generation control electronics with the ability 

for faster readout, low noise performance, and more 

complex control functions.  

 New types of scientific grade CCDs with some 

special properties.  

Any data, in general, is always limited in accuracy and 

incomplete; therefore, deductive reasoning does not seem to 

be the proper way to prove a theory. However, and as said in 

[8], statistical inference provides a mean for estimating the 

model parameters and their uncertainties, which is known as 

data analysis. It also allows assessing the plausibility of one or 

more competing models.  

The use of a Bayesian approach here is also justified in [8] 

where it is stated that for data with a high signal-to-noise ratio 

for example, a Bayesian analysis can frequently yield many 

orders of magnitude improvement in model parameter 

estimation, through the incorporation of relevant prior. This is 
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exactly what we intend through the implementation of what 

will be described in this paper, and detailed in the following 

section.  

II. DESCRIPTION OF THE PROBLEM TO BE RESOLVED 

The problem to be resolved here consists in the inference of a 

set of configurable parameters which affect the signal-to-noise 

ratio of a measurement. This will lead to an adaptive 

measurement strategy which can be addressed as a calibration 

refinement.  

Professional surveys plan the measurement strategy well in 

advance, taking into account all the relevant factors impacting 

on the measurement; this involves the set of specified fix 

parameters from the detector and also a set of parameters 

which configure the measurement, such as integration time, 

diameter of the aperture, etc.  

Once a measurement has finished, the data are archived and 

the analysis and processing begin. The approach proposed 

here is to establish a link between the results of a measurement 

under a specific detector configuration and the refinement, by 

application of parameter Bayesian inference, in the 

configuration parameters to be applied in a further 

measurement. The result of this Bayesian inference at 

parameter level is incorporated as additional knowledge for a 

model selection problem in the context of measurement data 

analysis (i.e., photometric cross-matching of multi-wavelength 

astronomical sources).  

For example, let us imagine that we have performed colour 

measurement in a multi-wavelength survey with   different 

instruments, each one under a specific configuration. Let us 

imagine that in the process of model comparison for the cross-

matching identification, the existence of a source inferred in a 

bandwidth which is not detected, is plausible. Then, based on 

this result, a new configuration for that instrument can be 

inferred in such a way that allows us to explore this 

plausibility indicated by the model comparison from the data 

obtained in the first measurement loop. Fig.1 shows a block 

diagram, which reflects in general lines the idea proposed here  

 

 

Fig. 1. Two levels of Bayesian Inference 

This approach involves the ingestion of knowledge into the 

decision framework from two different levels; as it can be 

seen from the Fig. 1, the model selection is refined in terms of 

its uncertainty by the ingestion of the information learned 

through the Bayesian parameter estimation of those 

parameters involved in the calibration of the measurement and 

therefore related to the uncertainty of this measurement. Two 

Bayesian problems at two different levels are resolved in an 

iterative manner: the parameter estimation for the refinement 

of the value of   included in the model used for the Bayesian 

model selection. In this way a quicker and more opitmized and 

robust data modelling and analysis as basis for decision is 

expected to be achieved.  

III. STATE OF THE ART OF TELESCOPE DETECTORS 

The great majority of detectors used in the astronomical field 

are Silicon-based ones; this means that the electronics 

involved in the specification, manufacturing and operational 

life of these detectors are relevant to the outcome obtained. As 

detailed in [3], the excitations of electrons responding to 

incident photons constitutes the fundamentals for practical 

flux measurement in almost all nowadays-photometric 

systems.  

In nowadays, CCDs are used in many instruments involved in 

the main current astronomical surveys; an extensive and 

increasing bibliography is currently being publishing. 

Therefore our paper will focussed on this type of instruments, 

however we have tried to retain the generic aspect of the 

characterization of any other type of detector and obviously 

the methodology presented here is fully valid with any other 

set of specific parameters.  
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A. Characterizatoin of telescope detectors 

A summary from [3] on the relevant information related to 

detector parameters has been included in this subsection for 

the sake of clarity. More detailed information can be found in 

[3].  

In general terms and for the context of our problem, a detector 

can be characterized by the following parameters, as indicated 

in [3]:  

 Quantum Efficiency (Q): it is the ratio between 

registered events and the incident photon.  

 Information Transfer Efficiency (E): it is the ratio 

between the square of the signal-to-noise ratio of the 

output and the square of the signal-to-noise ratio of the 

input.  

   
        

 

       
  (1) 

 

 Noise equivalent power (NEP): it is defined as the 

optical power producing an output equal to the noise 

level of the detector.  

     
  

              
 (2) 

 

 Linearity and Saturation: one of the most relevant 

characteristics of a CCD detector is its linear property. 

This means that, under ideal scenario (ignoring effects 

such as, noise, dark current, polarization current, sky 

background contribution, etc), the intensity registered in 

each pixel (as electrons) is proportional to the incident 

light. However this linear behaviour has its limits. The 

most obvious one is the Saturation threshold, which is 

measured by the Full-well capacity.  

 Full-well capacity: this parameter measures the limit 

of the accumulated charge before saturation begins. 

This value is normally included in the technical 

specification of the detector’s supplier.  

 Event or pixel capacity: it is defined as how many 

events can be usually accumulated before some 

saturation effect takes place.  

 Working range: also named Dynamic range, is 

essentially the same as event capacity for a noiseless 

accumulative single detector, but more generally 

interpreted as the difference between useful maximum 

and minimum event counts.  

 Gain (G): the digital image consists of a table of 

numbers which indicate the intensity registered in each 

pixel. However, the numbers stored do not mean the 

quantity of electrons found in each electrode, as this 

quantity can be huge and this would make the resultant 

storage files too big. Therefore what is normally done 

is to divide the quantity of electrons by a certain 

number, named Gain; thus, what we register in the file 

is the number of counts obtained when performed the 

above division. Sometimes counts are called ADU 

(Analogue-to-Digital Units) or DN (Data Number). The 

Gain is therefore measured in electrons per count.  

 

Some cameras allow the user to choose the Gain. Then we 

could choose a small value for faint detections or bit to 

measure correctly sources of various brightness values, but all 

this without over passing the limit done by:  

 

             
             

            
 (3) 

 

 Counts(c): The number of photons that fall on a pixel 

is related to the counts by:  

         
   

 
 (4) 

Detector parameters such as quantum efficiency, linearity 

event capacity and so on, are often characterized by figures of 

merit, which manufacturers quote about their products. 

B. Review of the main sources of noise in the photometry 

measurement 

The error which all scientific measurements should carry 

means really uncertainty and it is due to noise. Following the 

line of discussion presented at the beginning of this section, 

once an electron has been excited by a photon, the next step 

consists in registering this event by the electronics of the 

detector. In this process, handling and reducing the number of 

extraneous electron activity which does not come from the 

source subject to the pure measurement (noise) constitutes a 

delicate and complex step of this process. A summary from [3] 

on the relevant information related to sources of noise has 

been included in this section for the sake of clarity. For more 

detailed information about the functional block description of 

any detector can be found in [3].  

There are numerous sources of noises in the CCD images. The 

following list identifies those sources of noise which are more 

relevant to the problem described in section 2:  

 Dark current; also named Thermal noise, it is produced 

by the spontaneous generation of electrons in the Silicon 

(Si) due to the thermal excitation of the material.  

The noise associated with dark current in a CCD is 

regarded as having a spatial dependence, in that it relates 

to minor irregularities in the solid state molecular bonding 

lattice, associated with material interfaces and impurities. 

Each pixel generates a slightly different level of dark 

current, so the noise depends on non-uniformity of the 

response over the surface as well as the dark current’s 

inherent quasi-Poisson contribution to the electron counts. 

Dark current, following a generally Richardson law type 

dependence on temperature, could fill the potential wells 

of an uncooled CCD at       in, typically, a few seconds, 
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but cooling to        say, reduces this to a tolerable few 

electrons per pixel per second. The standards approach to 

spatial non-uniformity of response in CCD is through flat 

fielding, although it should be remembered that there is an 

additional shot noise contribution to the adopted flat field 

contribution.  

Within the CCD, each pixel has a slightly different gain or 

quantum efficiency when compared with its neighbours. In 

order to flatten the relative response for each pixel to the 

incoming radiation, a flat field image is obtained and used 

to perform this calibration. Ideally, a flat field image 

would consist of uniform illumination of every pixel by a 

light of source of identical spectral response to that of the 

object frames. Once a flat field image is obtained, one 

them simply divides each object frame byit implementing 

then instant removal of pixel-to-pixel variations.  

 Cosmic rays: they are part of the inhabitants of the 

interstellar space; cosmic rays are particles (ions or 

protons) which travel at very high speed, close to the speed 

of light. Cosmic rays are very annoying for the 

astronomers because they interact with the semiconductor 

material of the coupled charged devices creating electron-

hole pairs. These electronic micro-avalanches, 

concentrated in a few pixels appear in the images as points, 

or sometimes, lines very bright. Catastrophic damage 

could also be induced by latch-up mechanism 

(irreversible).  

 Read noise: this is a very important contribution to the 

total noise of the images. This noise is due to the random 

and unavoidable errors that are produced during the 

reading of the image, in the process of amplification and 

counting of the electrons captured in each pixel. These 

errors are intrinsic to the nature of the detector device.  

The existence of read noise has always to be taken into 

account because it affects to all steps towards the 

obtainment and treatment of the digital images. Each 

camera must have its own level of read noise, documented 

in its technical specifications.  

 Shot noise: this is a statistical noise due to the inherently 

non-steady photon influx. A Poisson distribution is normal 

for the arrival of the primary photon stream from a source 

of constant emissive power.  

 Clocking noise; this noise comes from the various high 

frequency oscillators involved in the gating circuitry. 

This noise rises with load and clocking frequency, but it 

can normally be controlled by manufacturers to a 

negligible level for astronomical applications.  

 Atmosphere: The total noise of detection is not just that 

of the photoelectric effect on the detector, since the 

signal has already been deteriorated by the atmosphere. 

Further reading on the problems with atmosphere in the 

astronomical measurements can be found in [4].  

For simplification purposes in the resolution of the problem 

described in II, only the following list of noise sources will be 

considered representative for the context of our problem. 

However the methodology can be extended to a more 

exhaustive list of noises: dark current, read noise, background 

noise.  

IV. SIGNAL-TO-NOISE RATIO AND CONFIGURABLE 

PARAMETERS 

As detailed in [2], a careful understanding of the main sources 

of uncertainties can suggest ways to improve our measurement 

strategy, this means, the observation, reduction and analysis 

processes.  

A crucial concept in photometry is the signal-to-noise ratio 

(S/N), which is equivalent to the concept of percentage error 

            . 

It is very important to assess and, if possible, to reduce the 

noise of the images. In this direction, the parameter     is 

very useful in the assessment of the feasibility, reliability and 

quality of the detection. As a general rule, and based on the 

considerations expressed in [5], to get reliable photometry 

and/or astrometry measurements, the minimum threshold must 

be:        
As a first preliminary simplification, under the assumption of 

photon noise dominating the noise, the counting statistics of 

the number of photons impacting on a given area per second 

can be modelled by a Gaussian distribution, where the scatter 

is the square root of the number of photons, therefore:  

     
 

√ 
 (5) 

Where   includes the photon counts for the sky foreground 

and the sky background, both of them carrying noise 

components. To obtain the count from the source alone, the 

sky background contribution has to be substracted. Then, 

considering this two contributions, we can write the following:  

     
       

√                     

 (6) 

The S/N ratio changes with the integration time,   and with the 

telescope aperture,    , therefore these two parameters 

encompass the configuration domain by which the S/N ratio 

can be optimized in the process explained in section 2.   

For the telescope aperture, we know that increasing the 

diameter of the telescope primary,    , by a factor of 2 

increases the collecting area by factor of 4, thus for a given 

integration time,   we get:             or similarly if we 

consider the number of pixel for a specific diameter, we can 

write:          

Regarding the integration time dependency with the signal-to-

noise ratio, we can write:  

     
      

√             

 (7) 

Where   is the count rate expressed in          . Therefore,  
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     √  (8) 

 

Similarly the number of exposures impact on the noise of the 

resulting image. According to [5] if the exposure is broken 

into   equal short exposures, the error in the mean of the 

measurements would be:  

       
        

√     

 (9) 

Where          is the scatter in the individual short exposures 

and       is the number of such short exposures.It is 

important to keep in mind that if we add   images resulting 

from   short exposures, the resulting signal is         
    , and total noise of the resulting image will be   

√  
    

      
  As a conclusion, the signal-to-noise ratio 

of an addition of images from the same object is bigger and 

therefore better than the signal-to-noise ration of each 

individual image.  

So far, photon noise has been assumed to be the dominant 

contribution of the noise, and therefore the other noise sources 

contributions have been reduced to zero for the     equations 

above. However, in the case of faint sources detection the dark 

current and the read noise can play a key role in the    , 

therefore, we will develop the     equation, with the 

integration time dependency and including at least the 

following sources of noise: photon noise, dark current and 

read noise. For each of the noise sources, valid approximations 

will be considered in order to obtain a final    equation, 

which is computational cost affordable for anIntel mac Core 2 

Duo computer.  

Therefore, the equation for the     of a measurement made 

with a CCD can be given by:  

 
    

  

√                
  

 
(10) 

Where:  

   is the total number of photons which compound 

the signal detected from the object.  

   is the total number of photons coming from the 

background also called sky.  

   is the total number of dark current electrons per 

pixel.  

   
 is the total number of electrons per pixel resulting 

from the read noise.  

The noise terms in equation 10 can be modelled by Poisson 

distributions. The term      is used to apply each noise term 

on a per pixel basis to all the pixels involved in the     

measurement. A more complete equation taking into account 

digitization noise within the A/D converter can be found in 

[2].   

As explained in [2], and using the fact that       , a 

standard error for the measurement can be obtained as:  

            
      √    

  

 (11) 

 

where   is equal to the noise terms indicated in 10 and        

is the correction term between an error in flux (electrons) and 

that same error in magnitudes (Howell, 1993).  

The equation 8 can also be expressed in terms of count rate 

and integration time, as follows:  

 
    

  

√                  
  

 
(12) 

 

And in line with the text above, each terms of equation 8 can 

be expressed as follows:  

      
   

 
 (13) 

 

       √      (14) 

 

                 
 

     
   

   
 (15) 

           
             

      
 (16) 

 

Where   ,   and    are proporcionality constants.  

V. BAYESIAN INFERENCE: ESTIMATION OF THE 

INTEGRATION TIME AND APERTURE 

In general, as described in [8], a Bayesian Probability Density 

Function is a measure of our state of knowledge of the value 

of the parameter. When we acquire some new data Bayes’ 

theorem provides a means for combining the information 

about the parameter coming from the data, through the 

likelihood function, with the prior probability, to arrive at a 

posterior probability density,         , for the parameter.  

Let us be   the known model for the signal-to-noise ratio of a 

multi-wavelength measurement system which identifies cross-

matching sources,   the set of configurable 

parameters,        , being   the integration time and      the 

configurable aperture diameter of the instrument, and   the 

data of the measurement;  is the information associated to the 

model. By application of Bayesian inference, the configurable 

parameters for an established model   can be estimated as 

follows:  

            
                   

        
 (17) 

 

This equation can be written in the following way:  

 

          

 
                   

∫  
  

  
                    

 (18) 
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Therefore it becomes evident that the denominator is just a 

normalization factor and we can focus on just the numerator, 

where          is named the probability a priori and 

           is the likelihood.  

Strictly speaking, as it is explained in [8], Bayesian inference 

does not provide estimates for parameters; rather, the Bayesian 

solution to the parameter estimation problem is the full 

posterior PDF,            and not just a single point in the 

parameter space. It is useful to summarize this distribution and 

one possible candidate of the best-fit value is the posterior 

mean,  

     ∫            (19) 

 

We will start developing the Bayesian estimation parameter 

for the integration time  , however the consideration of more 

than one parameter is immediate and in that case multiple 

integrals will be considered; also for the marginalization of the 

corresponding nuisance parameters.  

A preliminary choice for the prior probability will be a 

Uniform distribution, therefore:  

          
 

  
 

 

         

 (20) 

Where     and      are the maximum and minimum 

integration time to be defined for the observation under 

consideration.  

Let us be    the integration time used in a measurement for the 

data with a specific uncertainty value for that measurement,  .  

In general, the difference between the data and the model is 

called the error, therefore:  

                               (21) 

                    

 ∏ 

 

   

           

 

The model here   is the one proposed in 12, however for the 

sake of clarity in the following expressions, we will consider 

that equation 12 can be simplified as follows:  

       √  (22) 

Being   a constant and        , this means that the 

signal-to-noise ratio, which depends on the integration time, is 

related to the uncertainty of the modelled values, by this 

simplified equation.  

The posterior probability density distribution for the parameter 

integration time can be expressed as follows:  

                          (23) 

 

√   
    { 

                 
 

√ 
  

   
}

 

  
 

 

A uniform prior on the parameter under consideration is 

chosen for this preliminary approach to the Bayesian 

parameter estimation problem. Similarly, if we consider the 

Bayesian parameter estimation for the aperture parameter, and 

taking into account its relationship with the number of pixel, 

coming from the relationship with the telescope diameter as 

indicated above, we can write the following:  

 
                                

  
(24) 

 

√   
   { 

                    
 

   
}

 

     
 

 

Now, if we assume that the two parameters considered so far, 

  and      are independent one of the other, this means that 

we can apply the following:  

 
             
                           

(25) 

                              
 

If we substitute the expressions corresponding to the     as 

indicated above, we observe that two additional parameters,   

(count), and   (Temperature) appear. These are two nuisance 

parameters that can be eliminated by marginalizing the 

posterior probability distribution function along the range of 

each of the nuisance parameters, this means:  

 

             

 ∫ ∫ 
  

                      
(26) 

 

Introducing the above expressions of noise into this equation 

we can write the following long expression:  

               
 

  

 

     
  (27) 

    { 
                                  

 

   
} 

 ∑∑
 

  
  

 

     
  

    

{
 
 

 
 

 
                 

√                  
  

  
  

   

}
 
 

 
 

      

 

Where the terms of noise are the ones indicated through the 

above equations 12 to 17.  

Compared to classical data mining techniques, such as MAP 

(maximum a posteriori), this approach allows to consider the 

whole distribution of probabilities instead of an individual 

value and this leads to a more accurate determination of the 

optimum set of configurable parameters in the adaptive loop 

of extracting usable information from measurements. Other 

classical classification methodologies such as Naive Bayes use 
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independency variables assumptions which are not always 

representing the reality of the problem under consideration.  

A toy example has been built based on the integration time 

and aperture of different channels of Subaru from the 

COSMOS survey, in order to show some preliminary results 

derived from the approach presented in this paper. Figures 2 

and 3 represent the posterior probability density distribution in 

terms of integration time and number of pixels within the 

aperture used from several observations. In the context of this 

example is clear that the integration time has a considerably 

strong impact on the faint sources detections, therefore the 

approach covered in the previous sections of this paper intends 

to infer the optimum integration time in order to increase the 

probability of detection for the next observation to be planned 

and defined.  

A real example is planned to be implemented using a model of 

signal-to-noise ratio in line with the expression presented in 

equation 27.  

 

Fig. 2. Posterior Probability Density Distribution for Integration Time 

 

 Fig.3. Posterior Probability Density Distribution for Number of Pixels within 

Aperture 

VI. CONCLUSION 

The methodology presented here enables the capability of an 

observational system to adapt its configurable parameters 

depending on the results from previous observations. The 

inclusion in the model of the main contributions of noise leads 

to a more refined parametric inference.  
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