
International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

78 

 

An Estimation of Distribution Algorithm for solving the Knapsack 

problem 
 

1Ricardo Pérez, 2S. Jöns, 3Arturo Hernández, 4Carlos A. Ochoa 
*1, PICYT-CIATEC A.C., León City, México  

2, CONACYT, México City, México 
3CIMAT A.C., Guanajuato City, México 

4UACJ, Ciudad Juárez City, México 

Email: 1rperez.picyt@ciatec.mx, 2jons_sanchez@hotmail.com, 3artha@cimat.mx, 
4alberto.ochoa@uacj.mx  

 

 

Abstract. The knapsack problem, a NP-hard problem, has been solved by different ways during 

many years. However, its combinatorial nature is still interesting for many academics. In this 

paper, an Estimation of Distribution Algorithm is applied for solving the Knapsack problem. 

KEDA for simplicity is called. It contains a probabilistic model of type chain for sampling new 

offsprings to solve the problem. In addition, we use a Greedy Algorithm and a Genetic Algorithm 

to compare the performance of the KEDA algorithm. According to the experiments, the genetic 

algorithm and the KEDA provide good solutions, but the performance from this evolutionary 

algorithm was able to give better results. 

 

Keywords: Estimation of Distribution Algorithm, Knapsack problem, genetic algorithm, greedy 

algorithm. 

 

* Corresponding Author:  

Ricardo Pérez Rodríguez, 

Posgrado Interinstitucional en Ciencia y Tecnología PICYT,  

CIATEC, A.C., México,  

Email: rperez.picyt@ciatec.mx     Tel:+52-462-4906221    

 

 

1. Introduction 
Evolutionary and meta-heuristic algorithms have been extensively used as search and optimization 

tools during this decade in several domains from science to engineering, and others. Many demanding 

applications that involve the solution of optimization problems of high complexity, a lot of these 

belonging to a special class of problems called NP-hard have been solved by various methods [1]. 

Evolutionary and meta-heuristic algorithms are now considered among the best tools to find good 

solutions with a reasonable investment of resources.  

Estimation of Distribution Algorithms (EDAs), introduced by Mühlenbein and Paaβ [2] have been 

used satisfactorily to solve complex combinatorial optimization problems. Chen et al [3], Liu et al [4] 

and Pan and Ruiz [5] can be consulted. 

Disadvantages of EDAs such as loss of diversity and insufficient use of location information of 

solutions have been tackled successfully by incorporating other methods such as Genetic Algorithms 

(GAs) during the evolutionary process. Chen et al [6] use this approach. 

Several works have been done in order to capture the problem structure with more precision. 

Advanced probabilistic models to solve combinatorial problems through EDAs have been proposed 

attempting to integrate higher order interactions to enhance the solution quality. Wang et al [7] and 

Chen et al [8] have contributed on it. 

The major procedure of an EDA is listed as follows.  

tel:+52-462-4906221


International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

79 

 

Step 1. Set the generation index g = 0. Initialize an initial population S(0) of size M.  

Step 2. Select a subset D from S(g) of size N, where N≤M.  

Step 3. Establish a probabilistic model P which somehow describes the distribution characteristics 

of D.  

Step 4. Generate a set K of new individuals by sampling P.  

Step 5. Select the best individuals from K∪ S(g) and assign them to the next generation S(g+1). 

Step 6. Let g = g+1. If g<GN, where GN is the maximum number of generations return step 2. 

Otherwise, output the best solution in S(g). 

The Knapsack problem is a classical combinatorial problem [9][10]. It can be described as follows: 

“Imagine taking a trip to which you can only carry a backpack that, logically, has a limited capacity. 

Given a set of items, each with a weight and a value, determine the number of each item to include in a 

bag so that the total weight is less than a given limit and the total value is as large as possible”, this 

problem can be considerate as NP-easy problem but some studies show that the Knapsack problem is 

an NP-hard problem [11]. 

In the present paper we introduce the Estimation of Distribution Algorithm for solving the 

Knapsack problem called KEDA for simplicity. The experiments were made on four types of instances 

from uncorrelated to subset-sum. All these instances probe the algorithm varying the parameters of the 

profits and the weight. It was necessary to have a comparison point for the KEDA and was used the 

Greedy Algorithm [9], this is a deterministic algorithm who gives an approximate result for the 

Knapsack problem. In addition, a Genetic Algorithm or GA was used in order to compare the 

performance among them. 

 

2. The Knapsack problem 
The Knapsack problem [10] is the typical combinatorial problem that has been studied since many 

years ago and was proved that it is a NP-hard problem [12]. The basic problem is the 0-1 Knapsack 

problem or Binary Knapsack problem and it has a search space of 2n – 1 possible solutions. 

The Knapsack Problem can be described as follows: “there are n objects, each of this objects have a 

profit and weight, and needs to select those whose sum of their benefits is maximized subject to the 

sum of the weight of the same objects should not exceed an amount determined”. It can be formulated 

mathematically by numbering each of its objects or items from 1 to n and introducing it to a vector of 

binary variables = 1,2,3,...,n, where each variable represented here will take the value 1 or 0 depending 

on whether it is selected or not. The solution to the Knapsack problem is select a subset of objects from 

the binary vector, solution vector, that satisfies the constraint on the equation (2) and the same time 

maximize the objective function on the equation (1). 

 

𝑧 =   𝑝𝑗𝑥𝑗

𝑛

𝑗=1

                                                                                                      (1) 

 
 

 𝑤𝑗𝑥𝑗 ≤ 𝑐

𝑛

𝑗=1

            𝑥𝑗 =  
if the 𝑗 object is selected 

0 otherwise
                                (2) 

 
 

where 

z represents the profit 

j represents the j-th object 

xj indicates whether the j object is part of the solution 

pj is the j-th object profit 

wj is the j-th object weight 



International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

80 

 

c is the volume or capacity of the knapsack 

 

3. Types of Knapsack problem instances 
The Knapsack Problem is affected by the relationship between the profit and the weight of the 

objects; these types of instances are the following: 

Uncorrelated: the profits and weight are distributed uniformly between one and a maximum T 

number.  

𝑝𝑗  ∈   1, 𝑇 ;  𝑤𝑗   ∈    1, 𝑇                                                                                  (3) 

 
Weakly correlated: the weight is distributed uniformly between one and a maximum T number and 

the profits are distributed uniformly around the weight and an R ratio. 

 

𝑤𝑗  ∈   1, 𝑇 ; 𝑝𝑗   ∈    𝑤𝑗 − 𝑅, 𝑤𝑗 + 𝑅                                                               (4) 

 
Strongly correlated: the weight is uniformly distributed between one and a maximum T number; the 

profits are the weight plus one K constant. 

 

𝑤𝑗  ∈   1, 𝑇 ;  𝑝𝑗  =  𝑤𝑗 + 𝐾                                                                                  (5) 

 
Subset-sum: the profits and weight have the same value and are distributed uniformly between one 

and a maximum T number. 

 

𝑤𝑗  ∈   1, 𝑇 ; 𝑝𝑗  =  𝑤𝑗                                                                                           (6) 

 
4. The Greedy Algorithm 

This algorithm gives an intuitive approach considering the profit and weight of each item; it is 

known as the efficiency which is based on the Equation (7). The objective is to try to put the items with 

highest efficiency into the Knapsack. It is necessary sort all the items based on the efficiency, using the 

Equation (8), before to apply the Greedy algorithm to the problem. 

 

𝑒𝑗 =  
𝑝𝑗

𝑤𝑗
                                                                                                                    (7) 

 
 

𝑝0

𝑤0
≥

𝑝1

𝑤1
≥ ⋯  ≥  

𝑝𝑛

𝑤𝑛
                                                                                            (8) 

 
5. KEDA for the knapsack problem 

Our approach is to use the MIMIC algorithm to build the probabilistic graph model. Introduced by 

De Bonet et al [13], the MIMIC algorithm uses a chain structured probabilistic model where the 

probability distribution of all the variables except the head node is conditioned on the value of the 

variable preceding them in the chain. It means a marginal univariate function and n-1 pairs of 

conditional density functions to build the probabilistic graph model. 

Solution representation: any solution of the problem mentioned should be a specific binary vector 

that represents the objects in the knapsack. Thus, a solution can be expressed by 0 or 1 for each object 

according to section 2.  

Probability model: In this paper, the probability model is designed as a probability matrix. The 

element pj of the probability matrix represents the probability that the object j be loaded in the 

knapsack. For all j (j = 1, 2, … n), pj is initialized as  



International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

81 

 

𝑝𝑗  0 =
 𝑥𝑗 = 1𝑛

𝑗=1

𝑛
                                                                                             (9) 

 
 

where n represents the number of elements. Via sampling according to the probability matrix new 

promising individuals may be generated.  

 

6. Experiments 
To test the KEDA was used the Generator of Knapsack Test Instances [14]; it requires the number 

of elements and the coefficients range to generate a test instance. We generate the four types of test 

instances described, and was used the same parameters for each. Each algorithm was run 100 times for 

obtaining their average and standard deviation. 

The Table 1 shows the parameters used in this research.  

 

Table 1. Parameters used for solving the Knapsack problem 

Parameters Values 
Generator of Knapsack Test Instances 

Number of items or elements 

Range of Coefficients 

Number of instances 

Number of test in series 

 

Genetic Algorithm 

Type of selection 

Cross rate 

Mutation rate 

 

KEDA 

Probabilistic Model 

 

50 

1000 

100 

1000 

 

 

Tournament of size 2 

80% 

10% 

 

 

Structure of type chain 

 

7. Results 
We show the results obtained by testing each type instances with the different algorithms, i.e., the 

average, the best and the worst profit, and their fitness's standard deviation for each algorithm. We also 

show the algorithms behavior through some graphics. 

 

Uncorrelated: the Table 2 depicts the results for all algorithms where the KEDA offers the best std. 

deviation and the best average. 

 

Table 2. Results for uncorrelated instance 

Algorithm Worst Best Average Std. deviation 
Greedy Algorithm 

Genetic Algorithm 

KEDA 

1774 

0 

0 

1774 

2067 

2067 

1774 

1668 

2009 

- 

228 

103 

- same result in any interaction, there is no exist std. deviation 

 

The Figure 1 depicts the performance for each algorithm in each interaction. 



International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

82 

 

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

B
e

n
e

fi
t

Iteraction

Performance on Uncorrelated instance

Greed algorithm Genetic algorithm KEDA algorithm
 

Figure 1. Trials for uncorrelated instance 

 
Weakly correlated: the Table 3 details the results for all algorithms where the KEDA again offers 

the best std. deviation and the best average. 

 

Table 3. Results for weakly correlated instance 

Algorithm Worst Best Average Std. deviation 
Greedy Algorithm 

Genetic Algorithm 

KEDA 

658 

0 

0 

658 

935 

935 

658 

811 

890 

- 

90 

55 

- same result in any interaction, there is no exist std. deviation 

 

The Figure 2 details the performance for each algorithm in each interaction. 

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

B
e

n
e

fi
t

Iteraction

Performance on Weakly correlated instance

Greed algorithm Genetic algorithm KEDA algorithm
 

Figure 2. Trials for weakly correlated instance 

 
Strongly correlated: the Table 4 shows the results for all algorithms where the KEDA again offers 

the best std. deviation and the best average. 

 

Table 4. Results for strongly correlated instance 

Algorithm Worst Best Average Std. deviation 



International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

83 

 

Greedy Algorithm 

Genetic Algorithm 

KEDA 

828 

0 

0 

828 

1034 

1034 

828 

941 

1019 

- 

109 

15 

- same result in any interaction, there is no exist std. deviation 

 

The Figure 3 shows the performance for each algorithm in each interaction. 

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

B
e

n
e

fi
t

Iteraction

Performance on Strongly correlated instance

Greed algorithm Genetic algorithm KEDA algorithm
 

Figure 3. Trials for strongly correlated instance 

 
Subset-sum: the Table 5 presents the results for all algorithms where the KEDA again offers the best 

std. deviation and the best average. 

 

Table 5. Results for subset-sum instance 

Algorithm Worst Best Average Std. deviation 
Greedy Algorithm 

Genetic Algorithm 

KEDA 

573 

0 

0 

573 

996 

996 

573 

914 

988 

- 

107 

11 

- same result in any interaction, there is no exist std. deviation 

 

The Figure 4 presents the performance for each algorithm in each interaction. 

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

B
e

n
e

fi
t

Iteraction

Performance on Subset-sum instance

Greed algorithm Genetic algorithm KEDA algorithm
 

Figure 4. Trials for subset-sum instance 



International Journal of  

Soft Computing and Software Engineering (JSCSE) 
 

Vol.4,No.5, 2014 

Published online: May 25, 2014 

 
e-ISSN: 2251-7545 

DOI: 10.7321/jscse.v4.n5.1 

 

84 

 

 

8. Conclusions 
There are many evolutionary algorithms and meta-heuristics to solve the Knapsack problem; in this 

work we introduce the KEDA algorithm which is an evolutionary algorithm. The experiments were 

designed with the same parameters for the three algorithms to give them the same characteristics in 

order to be equal between them. 

We can see in all the graphics the algorithms behavior, and we can observe that the Greedy 

Algorithm was the worst because it always yields the same result for any interaction. The KEDA and 

the Genetic Algorithm yield more consistent results, its graphs show that these algorithms in the most 

of the cases give good results.  

So we can conclude that the KEDA is an alternative to solve the Knapsack problem, because each 

time that it's run, it gives a good solution, and this solution always is better that the solutions obtained 

by the other algorithms. Overall the results present a low standard deviation. 

 

References 
 

[1] McDuff-Spears W, Using neural networks and genetic algorithms as heuristics for NP-complete 

problems, Thesis of Master of Science in Computer Science, George Mason University, Virginia, 

USA, 1989. 

[2] Mühlenbein H, Paaß G, “From recombination of genes to the estimation of distributions: I. binary 

parameters”, in Parallel Problem Solving from Nature PPSN IV, Voigt H, Ebeling W, Rechenberg 

I, Schwefel H, Eds., Berlin: Springer, pp. 178–187, 1996. 

[3] Chen S, Chen M, Chang P, Zhang Q, Chen Y, “Guidelines for developing effective Estimation of 

Distribution Algorithms in solving single machine scheduling problems”, Expert Systems with 

Applications, vol. 37, pp. 6441-6451, 2010. 

[4] Liu H, Gao L, Pan Q, “A hybrid particle swarm optimization with estimation of distribution 

algorithm for solving permutation flowshop scheduling problem”, Experts Systems with 

Applications, vol. 38, pp. 4348-4360, 2011.  

[5] Pan Q, Ruiz R, “An estimation of distribution algorithm for lot-streaming flow shop problems with 

setup times”, Omega, vol. 40, pp. 166-180, 2012. 

[6] Chen S, Chang P, Cheng T, Zhang Q, “A Self-guided Genetic Algorithm for permutation flowshop 

scheduling problems”, Computers and Operations Research, vol. 39, pp. 1450-1457, 2012. 

[7] Wang L, Wang S, Xu Y, Zhou G, Liu M, “A bi-population based estimation of distribution 

algorithm for the flexible job-shop scheduling problem”, Computers and Industrial Engineering, 

vol. 62, pp. 917-926, 2012. 

[8] Chen Y, Chen M, Chang P, Chen S, “Extended artificial chromosomes genetic algorithm for 

permutation flowshop scheduling problems”, Computers and Industrial Engineering, vol. 62, pp. 

536-545, 2012. 

[9] Kellerer H, Pferschy U, Pisinger D, Knapsack Problems, Springer, Berlin, Germany, 2004. 

[10] Silvano M, Toth P, Knapsack Problem, Algorithms, and Computer Implementations, John Wiley 

and Sons, New York, USA, 1990. 

[11] Garey M, David S, Computers and Intractibility: A Guide to the Theory of NP-Completeness I, 

1979. 

[12] Pisinger D, “Where Are The Hard Knapsack problems?”, Computers and Operations Research, 

vol. 32, pp. 2271-2282, 2005. 

[13] De Bonet J, Isbell C, Viola P, “MIMIC: Finding Optima by Estimation Probability Densities”, 

Advances in Neural Information Processing Systems, vol. 9, 1997. 

[14] Pisinger D, “Core Problems in Knapsack Algorithms”, Operations Research, vol. 32, pp. 2271-

2282, 2005. 


