
International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015
Published online: Feb 25, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

Model Based Refinement and the Design of Retrenchments

Richard Banach
School of Computer Science, University of Manchester,

Manchester, M13 9PL, UK
Email: banach@cs.man.ac.uk

Abstract. The ingredients of typical methodologies for model based development via
refinement are re-examined, and some well-known frameworks are reviewed, drawing out
commonalities and differences. It is observed that the ingredients of these formalisms can
frequently be ‘mixed and matched’ much more freely than is often imagined, resulting in
semantic variations on the original formulations. It is also noted that similar alterations in the
semantics of specific formalisms have taken place de facto due to applications pressures and
for other reasons. This analysis suggests prioritising some criteria and proof obligations over
others within this family of methods. These insights are used to construct a foundation for the
design of notions of retrenchment appropriate for, and complementary to, given notions of
refinement. The notions of retrenchment thus derived for the specific refinement formalisms
examined earlier, namely Z, B, Event-B, ASM, VDM, RAISE, IO-automata and TLA+, are
presented, and within the criteria given, all turn out to be very similar.

Keywords: Model Based Development, Refinement, Retrenchment, Z, B, Event-B, ASM, VDM,
RAISE, IO-automata, TLA+.

* Corresponding Author:
Richard Banach,
School of Computer Science, University of Manchester,
Manchester, M13 9PL, UK,
Email: banach@cs.man.ac.uk

1. Introduction

Refinement, as a model based methodology for developing systems from abstract specifications, has

been around for a long time [1]. In this period, many variations on the basic idea have arisen, to the
extent that an initiate can be bewildered by the apparently huge choice available. As well as
mainstream refinement methodologies such as ASM, B, Z, VDM, RAISE, IO-automata, TLA+ etc.,
which have enjoyed significant applications use, there are a myriad of other related theories in the
literature, too numerous to cite comprehensively. And at a detailed theoretical level, they are all
slightly different.

From a developer's point of view, this variety can only be detrimental to the wider adoption of
formal techniques in the real world applications arena — in the real world, developers have a host of
things to worry about, quite removed from evaluating the detailed technical differences between
diverse formal techniques in order to make the best choice regarding which one to use. In any event,
such choice is often made on quite pragmatic grounds, such as the ready access to one or more experts
and, crucially these days, availability of appropriate tool support. Anecdotally, the choice of one or

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

32

another formalism appears to make little difference to the outcome of a real world project using such
techniques — success seems to be much more connected with proper requirements capture, and with
organising the development task in a way that is sympathetic to both the formal technique and to the
developers’ pre-existing development practices.

This is not to say that the designs of different refinement notions are poorly motivated. The
description of a typical refinement notion is justified by a number of external goals, from which
starting point the technical details of the particular notion follow quite logically. However, it is
frequently the case that the considerations in play here are somewhat orthogonal to the principal
concerns of practical developers.

In this paper we examine what goes into a typical notion of model based refinement by examining a
number of cases. Such an analysis has a number of benefits. For one thing, it can contribute towards an
informed point of view regarding detailed differences between techniques, and how different
techniques might to relate to one another, especially now that verification techniques and their tools
can increasingly address mainstream industrial scale problems. This can guide the management of
relationships between techniques going forwards into the future, and specifically can inform a
perspective on how tools for different techniques might relate to one another, an issue relevant to the
(currently active) Verification Grand Challenge [2-4]. This line has been briefly explored in [5].

For another thing, understanding the relationships between different refinement techniques can help
guide the design of retrenchment notions [6-7] corresponding to different variants of refinement.
Unlike refinement, which is designed to deliver guarantees about the relationship between abstract and
concrete systems provided appropriate conditions are met, retrenchment, a weakening or liberalisation
of model based refinement, is designed to offer maximal expressive flexibility when refinement is
confronted with issues that do not fit within its constraints. Thus, designing a notion of retrenchment is
not like designing a notion of refinement: rather than choosing a number of external goals that
constitute a notion of correctness and then deriving the technical details of the refinement,
retrenchment has to consider how issues that break strict conformity with such correctness criteria may
fruitfully be described. In this context, considering a number of refinement variants together helps to
highlight how each refinement notion ought to relate to its corresponding retrenchment notion. The
latter is in turn crucial when we realise that to gain the maximum benefit from the two techniques, a
close interplay between them is vital.

It is remarkable that, in large part, both of these things are supported by essentially the same body of
evidence (at least if one approaches them in the way it is done in this paper). The things that diverse
model based refinement notions have in common, and that thus provide a potential focus for
convenient interworking between them at the operational level of tools and the like, also provide a
focus for the design of retrenchment notions, since it is the common things that survive when one seeks
to ‘liberate’ refinement, as one does with retrenchment. It is these implications for retrenchment that
this paper explores in detail.

The rest of the paper is as follows. In Section 2 we discuss a number of features commonly found in
model based formalisms. Our approach is very much structured round features that turn out to be of
interest later, rather than the way one would evaluate refinement notions per se. Thus for instance,
while a traditional discussion of notions of correctness in the context of refinement would focus on
issues such as termination, and partial or total correctness, our discussion omits these since they play
no role in retrenchment — rather, what we call ‘notions of correctness’ deals with some lower level
issues that emerge from higher level considerations. Another typical key issue for refinement notions,
which is connected with the preceding one, is the problem of soundness and completeness of a given
collection of proof obligations with respect to a previously stated notion of partial or total correctness.
Again, since these issues have no counterpart for retrenchment, there is no discussion of them below.
Similar remarks apply to safety and liveness. Continuing this line of thought, in a traditional evaluation
of refinement notions, one might well critically examine the external motivations for setting up a
refinement notion in the way it was done, and compare the way that similar issues were addressed in
different formalisms, or, taking into account that different refinement notions were conceived to

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

33

address widely differing situations, why certain features are present in some notions but not others. But
such considerations once more serve no purpose for us, so we do not dwell on them — it is sufficient
for us to note the variety that we see.

In Section 3 we show how our generalities are reflected in a number of specific well known
approaches, namely ASM, B, Event-B, Z, VDM, RAISE, IO-automata, TLA+. Considering that in
many of these cases the same formal framework is supported by more than one detailed theory, we
start the discussion of each approach by citing one or more standard references which sets the context
for the remainder of the discussion. Although we discuss eight approaches, we make no claim of
completeness of coverage, given the large number of such formalisms that are to be found in the
literature. Our aim is to exhibit a variety of features and the way that they compare and contrast, rather
than to give a fully comprehensive account of each approach. A consequence of this is that when an
approach contains one or more features sufficiently similar to ones discussed already, we tend to be
brief in the extreme. Section 4 reflects on the evidence accumulated from all this, and draws some
appropriate conclusions. Section 5 takes these points forward and shows how the insights gained
should inform the design of a notion of retrenchment to complement a given notion of refinement. A
strong element of this process is compatibility via the retrenchment Tower Pattern, discussed in
Section 5.2. Section 6 then considers how the preceding can be instantiated in the context of the eight
formalisms examined earlier, showing a large degree of commonality in the resulting retrenchment
designs. The general analysis of refinement and retrenchment against broad criteria in Sections 3-6,
and the detailed definitions of retrenchment in the specific methodologies discussed in this paper,
constitute the main contributions of the present work. Section 7 concludes.

2. Model Based Refinement Methods: Generalities

A typical model based formal refinement method, whose aim is to formalize how an abstract model

may be refined to a more concrete one, consists of a number of elements which interact in ways which
are sometimes subtle. In this section we bring some of these facets into the light; the discussion may be
compared to a similar one in [8].

Formal language. All formal refinement techniques need to be quite specific about the language in

which the elements of the technique are formalised. This precision is needed for proper theoretical
reasoning, and to enable mechanical tools with well-defined behaviour to be created for carrying out
activities associated with the method. There are inevitably predicates of one kind or another to describe
the properties of the abstract and concrete models, but technical means are also needed to express state
change within the technique. Compared with the predicates used for properties, there is much more
variety in the linguistic means used for expressing state change, although each has a firm connection
with the predicates used for the modelling of properties.

Granularity and naming. All formal refinement techniques depend on relating concrete steps (or

collections of steps) to the abstract steps (or collections of steps) which they refine. Very often, a single
concrete step is made to correspond to a single abstract one, but occasionally more general schemes (in
which sequences of abstract and concrete steps figure) are considered. The (1,1) scheme is certainly
convenient to deal with theoretically, and it is often captured by demanding that the names of
operations or steps that are intended to correspond at abstract and concrete levels are the same.
However, in many applications contexts, such a simple naming scheme is far removed from reality,
and if naively hardwired into the structure of a tool, makes the tool much less conveniently usable in
practice.

Concrete-abstract fidelity. All formal refinement techniques demand that the concrete steps relate

in a suitable manner to abstract ones. Almost universally, a retrieve relation (also referred to as a
refinement mapping, abstraction relation, gluing relation, etc.) is used to express this relationship. It is

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

34

demanded that the retrieve relation holds between the before-states of a concrete step (or sequence of
steps) and the abstract step (or sequence of steps) which simulates it; likewise it must hold for the after-
states of the simulating pair. In other words (sequences of) concrete steps must be faithful to
(sequences of) abstract steps. (A special case, simple refinement, arises when the retrieve relation is an
identity.) What we call concrete-abstract fidelity in this paper is more conventionally referred to as the
forward simulation property for refinement notions. However, since in specific contexts this is often
accompanied by other detailed criteria, we prefer a more neutral phrase here.

Concrete-abstract fidelity is the one feature that can be found in essentially the same form across the
whole family of model based formalisms. It is also the case that this fidelity —usually expressed using
a proof obligation (PO), the fidelity PO— is often derived as a sufficient condition for a more abstract
formulation of refinement, concerning the overall behaviour of ‘whole programs’. These sufficient
conditions normally form the focus of the theory of model based refinement techniques,1 since they
offer what is usually the only route to proving refinement in practical cases.

Notions of correctness. One of the responsibilities of a formal refinement technique is to dictate

when there should be concrete steps that correspond to the existence of abstract ones. This (at least
implicitly) is connected with the potential for refinement techniques to be used in a black-box manner.
Thus if an abstract model has been drawn up which deals adequately with the requirements of the
problem, then any refinement should guarantee that the behaviour expressed in the abstract model
should be reflected appropriately in more concrete models, and ultimately in the implementation, so
that the requirements coverage persists through to code. Note that this is again a much more narrowly
drawn focus for the phrase ‘notion of correctness’ than is usual.

There is much variation among refinement techniques on how this is handled, particularly when we
take matters of interpretation into account. Although the mainstream techniques we discuss below are
reasonably consistent about the issue, some variation is to be found, and more variety can be found
among refinement variants in the literature. The formal content of these perspectives gets captured in
suitable POs, and often, the policy adopted has some impact on the fidelity PO too. A similar impact
can be felt in initialisation (and finalisation) POs.

Interpretation. The preceding referred (rather obliquely perhaps) to elements of model based

refinement theories that are expressed in the POs of the theory, i.e. via logic. However, this does not
determine how the logical elements relate to phenomena in the real world. If transitions are to be
described by logical formulae (involving before and after states, say), then those formulae can
potentially take the value false as well as true. And while determining how the logical formulae
correspond to the real world is usually fairly straightforward in the true case, determining the
correspondence in the false case can be more subtle. These matters of logical-to-real-world
correspondence constitute what we call here the interpretation aspects of a formal development
technique.

Trace inclusion. Trace inclusion, i.e. the criterion that every execution sequence of the system (i.e.

the concrete model) is as permitted by the specification (i.e. the abstract model), is of immense
importance in the real world. When an implemented system behaves unexpectedly, the principal post
hoc method of investigation amounts to determining how the preceding behaviour failed to satisfy the
trace inclusion criterion. This importance is further underlined by the role that trace inclusion plays in
model checking. The ‘whole program’ starting point of the derivation of many sufficient conditions for
refinement is also rooted in trace inclusion. Two forms of trace inclusion are of interest. Weak trace
inclusion merely states that for every concrete trace there is a simulating abstract one. Strong trace
inclusion goes beyond that and states that if Asteps simulates Csteps and we extend Csteps to Csteps ;
Cnxt, then Asteps can be extended to Asteps ; Anxt which also simulates. With weak trace inclusion, we

1 They are a key ingredient of the usual soundness and completeness arguments for refinement theories.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

35

might have to abandon Asteps and find some unrelated Astepsdifferent to recover simulation of Csteps ;
Cnxt. Given the crucial role of trace inclusion, it is perhaps surprising that in many cases, the POs
derived for refinement based formalisms do not guarantee trace inclusion without further assumptions.

Composition. It is a given that large systems are built up out of smaller components, so the

interaction of this aspect with the details of a development methodology are of some interest, at least
for practical applications. Even more so than for notions of correctness, there is considerable variation
among refinement techniques on how compositionality is handled — the small number of techniques
we review in more detail below already exhibit quite a diversity of approaches to the issue.

3. Some Well-Known Refinement Formalisms

In this section, we review how the various elements of model based refinement methodologies

outlined above are reflected in a number of specific and well-known formalisms. We look at Z, B,
Event-B, ASM, VDM, RAISE, IO-automata and TLA+. For simplicity, brevity and relevance to
retrenchment below, we stick to a forward simulation perspective throughout.

3.1. Z

Since Z itself [9] is simply a formal mathematical language, one cannot speak definitively of the Z

refinement. We target our remarks on the formulations in [10-11].
Formal language: Z uses the well-known schema calculus, in which a schema consists of named

and typed components which are constrained by a formula built up using the usual logical primitives.
This is an all-purpose machinery; ‘delta’ schemas enable before-after relations that specify transitions
to be defined; other schemas define retrieve relations, etc. The schema calculus itself enables schemas
to be combined so as to express statements such as the POs of a given refinement theory.

Granularity and naming: Most of the refinement formulations in [10-11] stick to a (1,1) framework.
Purely theoretical discussions often strengthen this to identity on ‘indexes’ (i.e. names) of operations at
abstract and concrete levels, though there is no insistence on such a close tieup in [12-13].

Concrete-abstract fidelity: In the above context for Z refinement, the fidelity PO comes out as
follows, which refers to the contract interpretation without I/O (while the behavioural interpretation
drops the ‘pre AOp’):

(∀ AState(u) ; CState(v) ; CState'(v') • pre AOp(u) ∧ R(u,v) ∧ COp(v,v')
 ⇒ (∃ AState'(u') • AOp(u,u') ∧ R'(u',v')))

where AState(u), CState(v) are (abstract and concrete) state schemas in state variables u, v respectively
(primes denote after-states), AOp(u,u'), COp(v,v') are corresponding operations, R(u,v) is the retrieve
relation, and ‘pre AOp(u)’, the precondition, in fact denotes the domain of AOp(u,u').

Notions of correctness: In Z, an induction on execution steps is used in the (1,1) framework to
derive trace inclusion. To work smoothly, totality (on the state space) of the relations expressing
operations is assumed. To cope with partial operations, a ⊥ element is added to the state space, and
totalisations of one kind or another, of the relations representing the operations, are applied. The
consequences of totalisation (such as the correctness condition above), got by eliminating mention of
the added parts from a standard forward simulation implication, constitute the POs of, and embody the
notion of correctness for, the totalisation technique under consideration. These turn out to be the same
for both contract and behavioural approaches, aside from the difference noted above.

Interpretation: The two main totalisations used, express the contract and the behavioural
interpretations. In the former, an operation may be invoked at any time, and the consequences of
calling it outside its precondition are unpredictable (within the limits of the model of the syntax being

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

36

used), including ⊥ , nontermination. In the latter, ⊥ is guaranteed outside the precondition (usually
called the guard in this context, but still defined as the domain of the relevant partial relation), which is
typically interpreted by saying the operation will not execute if the guard is false.

Trace inclusion: Trace inclusion has been cited as the underlying derivation technique for the POs,
and since an inductive approach is used, it is strong trace inclusion. However, the ‘fictitious’ transitions
of operations introduced by totalisation are treated on an equal footing to the original ‘honest’ ones, so
many spurious traces, not corresponding to real world behaviour, can be generated. For instance a
simulation of a concrete trace may hit a state (whether abstract or concrete) that is outside the ‘natural’
domain of the next partial operation. Then, in the contract interpretation, the trace can continue in a
very unrestricted manner, despite the different way that one would view the constituent steps from a
real world perspective. Things look a bit better in the behavioural interpretation, since such a trace is
thereafter confined to ⊥ .

Composition: One prominent composition mechanism to be found in Z is promotion. In promotion,
a component which is specified in a self-contained way is replicated via an indexing function to form a
family inside a larger system; this interacts cleanly with refinement [10-11]. However, the schema
calculus in general is not monotonic with respect to refinement without additional caveats [14].

3.2. B

The original B Method was described with great clarity in [15], and there are a number of textbook

treatments e.g. [16-18].
Formal language: Original B was based on predicates for subsets of states, written in a conventional

first order language, and on weakest precondition predicate transformers (wppts) for the operations.
The use of predicate transformers obviates the need for explicitly adjoining ⊥ elements to the state
spaces.

Granularity and naming: Original B adheres to a strict (1,1) framework; ‘strict’ in the sense that
tools for original B demand identical names for operations and their refinements. Abstract models of
complex operations can be assembled out of smaller pieces using such mechanisms as INCLUDES,
USES, SEES. However once the complete abstract model has been assembled, refinement proceeds
monolithically towards code. The last step of refinement to code, is accomplished by a code generator
which plugs together suitably designed modules that implement the lowest level B constructs.

Concrete-abstract fidelity: This is handled via the predicate transformers. Adapting the notation of
[15] for ease of comparison with Z, the relevant PO can be written:

AInv(u) ∧ CInv(u,v) ∧ trm AOp(u)
 ⇒ [COp(v,v')] ¬ [AOp(u,u')] ¬ CInv(u',v')

In this, AInv(u) and trm AOp(u) are the abstract invariant and termination condition (the latter being the
predicate of the precondition), while CInv(u,v) is the concrete invariant, which in original B, involves
both abstract and concrete variables and thus acts also as a retrieve relation; all of these are predicates.
[AOp(u,u')] and [COp(v,v')] are the wppts for the abstract and concrete operations, so the equation
says that applying the concrete and doubly negated abstract wppts to the after-state retrieve relation
yields a predicate (on the before-states) that is implied by the before-state quantities to the left of the
implication.

Notions of correctness: In original B, precondition (trm) and guard (fis) are distinct concepts (unlike
Z), albeit connected by the implication ¬ trm ⇒ fis , due to the details of the axiomatic way that these
two concepts are defined. Moreover, trm ∧ ¬ fis can hold for an operation, permitting miracles, a
phenomenon absent from formalisms defined in a purely relational manner. In original B, trm is a
conjunct of any operation's definition, so outside trm, nothing is assumed, and when interpreted
relationally, it leads to something like a ‘totalisation’ (though different from the Z ones). During

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

37

refinement, the precondition is weakened and the guard is strengthened, the former of which
superficially sounds similar to Z, though it is again different technically.

Interpretation: The interpretation of operation steps for which trm and fis both hold is the
conventional unproblematic one. Other steps fire the imagination. If trm is false the step aborts, i.e. it
can start, but not complete normally; modelled relationally by an unconstrained outcome, a bit like
contract Z. If fis is false the step does not start normally, but can complete; a miracle indeed, usually
interpreted by saying that the step will not take place if fis is false.

Trace inclusion: In original B, trace inclusion is not addressed directly, but as a consequence of
monotonicity. Refinement is monotonic across the B constructors, including sequential composition.
This yields a notion of weak trace inclusion, since the trm and fis of a composition are an output of a
composition calculation, not an input, and in particular, cannot be assumed to be the trm and fis of the
first component, as one would want if one were extending a simulation by considering the next step.
And even though the sufficient condition for fidelity, above, is a strengthening of the natural B
refinement condition, it does not lead to an unproblematic strong trace inclusion, since in a relational
model, we have the additional transitions generated by the ‘totalisation’, and miracles do not give rise
to actual transitions.

Composition: In a real sense, the interaction of refinement and composition is not an issue in
original B. The INCLUDES, USES, SEES mechanisms mentioned above are certainly composition
mechanisms, but they act exclusively at the top level. Only the finally assembled complete abstract
model is refined, which avoids the possibility of nonmonotonicity problems, such as those that arise for
Z [14]. The IMPORTS mechanism allows the combination of independent developments.

3.3. Event-B

Event-B [19-21] emerged as a focusing of original B onto a subset that allows for both more

convenient practical development, and also an avoidance of the more counterintuitive aspects of the
original B formalism, such as miracles.

Formal language: Event-B is rooted in a traditional relational framework, derived by restricting
original B operations (henceforth called events) to have a trm which is true, and controlling event
availability purely via the guard, which is the domain of the event transition relation, as in Z.
Distinguishing between guard and event in the syntax enables event transitions to be defined via
convenient notations (such as assignment) which are more widely defined than the desired guard.
Formally, the more exotic possibilities afforded by predicate transformers are no longer needed.

Granularity and naming: Event-B relaxes the strict (1,1) conventions of original B. As in original B,
the syntax of the refinement mechanism is embedded in the syntax of the refining machine, so an
abstraction can be refined in more than one way, but not vice versa. However, a refining event now
names its abstract event, so an abstract event can have several refinements within the same refining
machine. New events in a refining machine are implicitly understood to refine an abstract skip,
something which needed to be stated explicitly in original B, cluttering incremental development.

Concrete-abstract fidelity: The absence of the more exotic aspects of predicate transformers gives
the Event-B fidelity PO a quite conventional appearance:

(∀ u, v, v' • AInv(u) ∧ CInv(u,v) ∧ GCEv(v) ∧ CEv(v,v')
 ⇒ (∃ u' • AEv(u,u') ∧ CInv(u',v')))

This says that assuming the abstract invariant and the concrete invariant (which is again a joint
invariant i.e. retrieve relation) and the concrete guard for the before-states, and the concrete transition
relation, yields the existence of an abstract event which re-establishes the joint invariant in the after-
states.

Notions of correctness: The absence of preconditions distinct from guards simplifies matters
considerably. The previous ‘weakening of the precondition’ during refinement of an operation, is now

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

38

taken over by ‘disjunction of concrete guard with guards of all new events is weaker than the abstract
guard’. This is a quite different criterion, which nevertheless guarantees that if something can happen
at the abstract level, a suitable thing is enabled at the concrete level. This is also combined with guard
strengthening in the refinement of individual events, and a well foundedness property to prevent new
events from being always enabled relative to old events. Totalisations are no longer present in any
form, which has an impact on trace inclusion (see below).

Interpretation: The absence of preconditions distinct from guards simplifies interpretational matters
considerably. There is a firm commitment to the idea that events which are not enabled do not execute,
avoiding the need to engage with miracles and with spurious transitions generated by totalisation.

Trace inclusion: In the Event-B context, trace inclusion wins massively. Since for a refined event,
the concrete guard implies the abstract one, the implication has the same orientation as the implication
above, so the two work in harmony to enable any concrete step joined to an appropriate abstract before-
state, to be unproblematically simulated, a phenomenon not present in formalisms mentioned earlier —
simulated moreover, by a ‘real’ abstract event, not a fictitious one introduced via totalisation. New
events do not disturb this, since they are by definition refinements of skip, which can always
effortlessly simulate them. So we have genuine, uncluttered, strong trace inclusion.

Composition: Event-B takes a more pro-active approach to composition than original B. Event-B's
top-down and incremental approach means that system models start out small and steadily get bigger.
This allows composition to be instituted via decomposition. As a system model starts to get big, its
events can be partitioned into subsystems, each of which contains abstractions of the events not
present. These abstractions can capture how events in different subsystems need to interact, allowing
for independent refinement, and avoiding the non-monotonicity problems mentioned earlier.

3.4. ASM

The Abstract State Machine approach developed in a desire to create an operationally based

rigorous development framework at the highest level of abstraction possible. A definitive account is
given in [8].

Formal language: Among all the methodologies we survey, ASM is the one that de-emphasises the
formality of the language used for modelling the most — in a laudable desire to not dissuade users by
forcing them to digest a large amount of technical detail at the outset. System states are general first
order structures. These get updated by applying ASM rules, which modify the FO structures held in
one or more locations. In a departure from the other formalisms reviewed, all rules with a true guard
are applied simultaneously during an update, and therefore must be consistent.

Granularity and naming: The ASM approach tries as hard as it can to break the shackles of
imposing, up front, any particular scheme of correspondence between abstract and concrete steps
during refinement. Nevertheless, there must be some correspondence between the two, or else we are
totally adrift, so to underpin this, an ‘equivalence’ ≡ between the state spaces is postulated, which
functions as a retrieve relation. It is demanded that the equivalence has to be periodically re-
established, and in order to achieve this, a pair of simulating runs should be broken up into (m,n)
diagrams of m abstract steps and n concrete ones (for arbitrary finite m + n > 0), without any
preconceptions about how the (m,n) diagrams are to be arrived at, or which abstract or concrete steps
might occur in an (m,n) diagram.

Concrete-abstract fidelity: In striving to be as unrestrictive as possible, ASM does not prescribe
specific low level formats for establishing refinement. However, one technique, generalised forward
simulation, established by Schellhorn [22] (see also [23]), has become identified as a de facto standard
for ASM refinement. This demands that the (m,n) diagrams mentioned above are shown to be
simulating by having a ‘working’ retrieve relation ≅, which implies the actual retrieve relation ≡. The ≅
relation is then used in implications of a similar form to those seen above, except that several abstract
or concrete steps (or none) can be involved at a time. As many (m,n) diagram simulations as needed to
guarantee coverage of all cases that arise must then be established.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

39

Notions of correctness: It has already been mentioned that the retrieve relation ≡ is referred to as an
equivalence. While almost all retrieve relations used in practice are in fact partial or total equivalences
between the state spaces [24], knowing this for sure a priori has some useful consequences. It leads to
a simple relationship between the guards of the run fragments in simulating (m,n) diagrams, subsuming
guard strengthening, and eliminating many potential complications. Refinement is defined directly via
a trace-inclusion-like criterion (periodic re-establishment of ≡), and for (0,n) and (m,0) diagrams, there
is a well foundedness property to prevent permanent lack of progress in one or other system in a
refinement. The analogue of ‘precondition weakening’ (though we emphasise that there is no separate
notion of precondition in ASM) is subsumed by the notion of ‘complete refinement’ which demands
that the abstract model refines the concrete one (as well as vice versa), thus ensuring that any time an
abstract run is available, so is a suitable concrete one, yielding persistence of coverage of requirements
down a refinement chain. Of course not all refinements need to be complete, permitting convenient
underspecification at higher levels, in a similar manner to Event-B.

Interpretation: Since states and transitions are defined directly, there are no subtle issues of
interpretation associated with them. Also, ASM rule firing is a hardwiring of the ‘transitions which are
not enabled do not execute’ convention into the formalism.

Trace inclusion: The (m,n) diagram strategy of ASM modifies the notion of trace inclusion that one
can sustain. The ASM (m,n) notion, at the heart of the ASM correct refinement criterion, can be
viewed as a generalisation of the Event-B (1,1) strategy.

Composition: With the major focus being on identifying the ground model, and on its subsequent
refinement (rather as in original B), the composition of independent refinements is not prominent in
[8][23]. On the other hand, if ≡ really is an equivalence (or as we would need to have it between two
state spaces which are different, a regular relation a.k.a. a difunctional relation [24]), there is a
beneficial effect on any prospective composition of refinements. Many of the issues noted in [14] arise,
because incompatible criteria about abstract sets (of states, say) which are unproblematic due to the
abstract sets’ disjointness, can become problematic due e.g. to precondition weakening when the sets’
concrete retrieve images become non-disjoint via a non-regular retrieve relation. A regular retrieve
relation does much to prevent this, facilitating composition of refinements.

3.5. VDM

VDM is among the oldest of the model based refinement methodologies, dating back to the early

70's [25-28]. Many of the notions that are now routinely found in model based methodologies had their
earliest incarnations in VDM.

Formal language: VDM uses conventional discrete mathematical concepts for modelling state. It
also uses a pre- and post- condition style of specification for state change, so that aspect is basically
relational. One notable aspect of VDM is that it allows the definition of the body of an operation Op
say, to be distinct from the definition of its pre- and post- conditions, pre-Op and post-Op respectively;
this allows the definition of the body to contain imperative elements such as assignments.
(Specifications refer to operations without a body.) Since a body must satisfy its specification, the
specification/body distinction means that VDM contains refinement in two different ways: between
specs and their bodies, and between levels of abstraction (as usual). Another notable feature of VDM is
the prominent use of a three valued logic for reasoning about partial functions and the like.

Granularity and naming: The literature on VDM typically features examples which contain
operations which are reified (VDM-speak for ‘data refined’) to similarly named operations, e.g. OP is
the reification of the abstract OPa [25]. So there is a (1,1) discipline in place with name almost-identity
which is not formally prescribed.

Concrete-abstract fidelity: In VDM concrete-abstract fidelity is taken care of by the Result Rule
([25] Appendix E.3). Adjusting the notation for easier comparison with formalisms already discussed,
this comes out as:

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

40

(∀ v, v' • pre-AOp(R(v)) ∧ post-COp(v,v')
 ⇒ post-AOp(R(v), R(v')))

In this, the retrieve function R is exactly that, a function, and the totality of R, and well-definedness of
all the constituents of the implication are assumed. This allows the whole PO to be stated in terms of
concrete variables alone. Aside from this, the condition is a simulation condition of a conventional
kind. The fact that operation bodies are distinct from their pre- and post- conditions, means that the
relationship between operation bodies and their pre- and post- conditions is captured in POs, amongst
which, the relevant one has content amounting to the one quoted.

Notions of correctness: In VDM pre-Op has to imply the domain of Op, making it a guard in earlier
terminology. Furthermore, preconditions are weakened during refinement, the consequences of which
are similar to those in Z.

Interpretation: In the VDM standard [29], the VDM language is given a denotational semantics.
Since this must give a meaning to all syntactically well-formed utterances of the language, ⊥ is needed
to cater for non-denoting utterances. This entails a kind of totalisation policy when interpreted in the
domains of the denotational semantics, the consequences of which can be imagined from earlier
discussions.

Trace inclusion: Without spelling it out directly, the preceding will have hinted that VDM runs into
trouble regarding trace inclusion. Since the preconditions are weakened during refinement, strong trace
inclusion (of bona fide traces, unpolluted by any spurious transitions generated by the totalisation
policy) is impossible,2 and a variant of the weak form (derived via the compositionality of the
denotational semantics of VDM and affected by totalisation, as we have seen before) is the best that
can be hoped for.

Composition: The composition of refinement developments is not discussed in the usual VDM
literature. However, Operation Decomposition allows the body of an operation to be expressed as an
algorithm using (specifications of) lower level operations — the algorithm has to be proved to be a
correct implementation of the specification, and VDM provides a collection of Hoare-triple proof rules
to accomplish this. The approach is very similar in spirit to the way that an original B
IMPLEMENTATION can IMPORT lower level operations into an algorithm that constitutes the
IMPLEMENTATION’s body, and the designer has to prove that this algorithm correctly refines the
system model that the IMPLEMENTATION claims to refine.

3.6. RAISE

Just as original B evolved into Event-B, so one could say that VDM prompted the development of

RAISE [30-32]. Whereas the former process was one of specialisation, the latter was one of expansion
and inclusion, in which the model oriented features of VDM were combined with algebraic features
such as those in OBJ [33], with concurrency features such as those in CSP [34], with modularity
features such as those in ML [35], with real time, and more.

Formal language: Compared with all the formalisms we have looked at thus far, the RAISE formal
language, RSL, is the most wide-spectrum and heavyweight, principally as a result of needing
structuring mechanisms for all the various flavours of definition that it caters for simultaneously, a
phenomenon amplified somewhat by the heavily universal-algebra-theoretic nature of most of its
constructs. Nevertheless, in the state-centric part, states are specified via types and predicates, much as

2 This is easy to see. Suppose a given concrete trace has been simulated, up to state v say, re-stablishing
the retrieve relation with an abstract state u. Now v satisfies the precondition of the next concrete step
by hypothesis. But u has been produced by simulating the previous concrete step. Since abstract
preconditions are stronger than concrete ones, there is no guarantee that u satisfies the precondition of
the next abstract step, as it must do to extend the simulation.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

41

everywhere else. The richness of RAISE enables state change to be specified in a wide variety of ways,
including imperative, axiomatic and algebraic.

Granularity and naming: The foundations of RAISE, based on universal algebra, imply that RAISE
implementation (RAISE-speak for refinement) is heavily restricted. The refining system must have a
signature that includes the signature of the refined one. In effect, this typically imposes a rather tightly
drawn (1,1) discipline, in our terminology.

Concrete-abstract fidelity: Aside from signature inclusion, the other major plank of the RAISE
implementation relation, is preservation of the ‘properties’ of the abstract system, where the properties
constitute a precisely defined theory derivable from the system definition in a prescribed way. This is a
wide-ranging and abstract definition of refinement, applicable across the whole of RAISE. If one
focuses on the state-centric part, and works hard enough, a VDM-like fidelity condition emerges,
which is even more restrictive than the original VDM one, due to the restrictions on signatures.

Notions of correctness: RAISE’s notion of correctness is that the environment of the system (whose
understanding of the system is via the system’s abstract model) determines what is asked of the system
and when. Thus any time an abstract operation is available, any refinement of it must also be available.
This certainly preserves requirements coverage down through refinement levels.

Interpretation: With its insistence on viewing the abstract model as well defined and as paramount,
the idea of asking what the concrete model might do in places where one was not supposed to look (i.e.
in places which did not directly refine abstract behaviour) is not really in scope for RAISE. One can
ask the question of course, and if one attempts to answer it in the context of a denotational semantics
(say), one would detect phenomena similar to ones discussed already.

Trace inclusion: RAISE has trace inclusion, but the wrong way round (from our point of view).
Thus, since a trace of the abstract system is a property of the abstract system derivable in a suitable
way (i.e. provided one defines suitable observers of state transitions etc.), and the preservation of
properties from abstract to concrete defines the notion of refinement in RAISE, an abstract trace will
have a corresponding concrete one, but not necessarily vice versa. This is connected with the idea that
the system's environment has the initiative about which system operations get invoked and when; and
in particular, that the system itself never takes such initiative. This same idea holds in VDM (due to the
details of the way that ‘adequacy’ and ‘totality’ restrictions work) and to varying degrees in other
formalisms that take seriously the idea of ‘weakening the precondition’, but it finds its clearest
expression in RAISE with its ab initio demands to preserve abstract properties.

Composition: With its universal algebra-theoretic foundations, the compositionality of RAISE
developments is a top priority concern. The rather severe restrictions found in various parts of the
RAISE approach ensure that this aspect works smoothly.

3.7. IO-Automata

IO-automata were introduced in [36] and are discussed in [37]. Textbook treatments are found in

[38-39] where they constitute a convenient technique for discussing distributed algorithms.
Formal language: In the formal theory of IO-automata, states are elements of a state set, and state

transitions involve changing the focus from the before-state to the after-state, in line with the automata
theoretic flavour. In practical use, rather as in ASMs, the linguistic framework of IO-automata is not
tightly constrained in order to improve the capacity to communicate. So notions like stacks and queues
can appear directly in the straightforward imperative-language-like constructions used, instead of
unravelling them to their basic mathematical ingredients. Thus IO-automata are rooted in a relational
framework of a conventional kind.

Granularity and naming: The IO-automata notion of refinement is defined via trace inclusion, and
established via (m,n) diagrams very like the ones of ASM, but in which n = 1 (i.e. always exactly one
concrete step). Accordingly, there is no specific restriction on how names of abstract and concrete
operations should correspond in refinement.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

42

Concrete-abstract fidelity: As just noted, the basic refinement criterion is that a concrete step should
be simulated by zero or more abstract ones. This generates a fidelity PO of a kind similar to the ASM
one.

Notions of correctness: One detail not mentioned thus far about the IO-automata fidelity criterion, is
that concrete steps need be simulable by abstract ones only when the concrete before-state is in the
retrieve relation with a reachable abstract (before-)state. This is a variation on what is usually stated in
a fidelity PO, and allows the abstract and concrete systems to behave in incompatible ways in the non-
reachable portions of their transition systems, but does not endanger trace inclusion.

Interpretation: The automata theoretic perspective of IO-automata implies, as do all automata
theoretic frameworks, an absence of problematic interpretational issues. The automata theoretic
perspective is based on the direct depiction of the states and transitions that exist, without introducing
intensional aspects regarding volition (whether on the part of the system or of the environment) and
without the use of logical formulae whose interpretation one has to worry about when they evaluate to
false.

Trace inclusion: More directly than in any other framework surveyed, IO-automata place trace
inclusion at the heart of the definition of refinement ([37] discusses several detailed versions).
Technically, the definition states a weak trace inclusion criterion. However, all practical means of
establishing trace inclusion are focused on strong trace inclusion via the usual kind of inductive
technique discussed above. It is clear that the restriction of the fidelity PO to reachable abstract before-
states does not threaten strong trace inclusion (provided one starts things off using the usual
initialisation PO).

Composition: The composition of IO-automata is discussed in the cited references. Consistent with
the automata theoretic flavour, only compatible collections of IO-automata can be composed,
compatibility amounting to a number of non-interference conditions on the components of an IO-
automaton. These components amount to named operations in our terminology, and their names are
‘free’, i.e. they are implicitly regarded as residing in a universal name space, and so might clash. For
compatible (appropriately non-clashing) collections, composition becomes a straightforward product
construction. With this perspective on composition, the composition of independent refinements is not
problematic.

3.8. TLA+

TLA+ [40] evolved as a more complete version of the earlier TLA [41]. The emphasis in TLA+ is

much more on traces as a whole rather than individual steps considered in isolation. Accordingly,
temporal properties (notably fairness properties) are much more to the fore.

Formal language: The trace descriptions in TLA+ are phrased in terms of states and state changes,
as expected. States are defined using the usual machinery, and state changes are pairs of before- and
after- states, so that particular aspect is basically relational. State changes are assembled into traces by
concatenation of individual steps in the usual way.

Concrete-abstract fidelity: The fundamental notion of refinement in TLA+ (called implementation
in TLA literature) is based on implication of the temporal logic formula specifying the abstract system
by the temporal logic formula specifying the concrete system, all up to stuttering since well behaved
TLA+ specs should be stuttering invariant. The focus on implication as the key idea, means that the
free variables of the two systems must correspond, and that consequently, things like local variables
must be appropriately quantified. To prove the implication in practice, one has to strip away these
quantifications and construct refinement mappings [42], which play the role of our retrieve relations,
but with the added temporal dimension. Since the concrete trace has to imply the abstract one, we
effectively regain a conventional fidelity criterion, modulated somewhat by the stuttering invariance
requirement.

Granularity and naming: As is clear from the preceding point, since what is demanded is trace
implication up to stuttering, and the traces are constructed from formulae whose subformulae typically

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

43

correspond to what we called operations or events above, there is no insistence in TLA+ that these
subformulae (and more precisely their names) need correspond in any particular way. In practice
though, in many examples, a straightforward (1,1) meta level correspondence is clearly visible.

Notions of correctness: With the focus on implication, there is no separate criterion that is aimed at
policing requirements coverage from abstract down to concrete as in other formalisms, and
consequently no conflicts with other desiderata arise.

Interpretation: With the focus on implication, no unusual issues concerning interpretation arise.
Trace inclusion: With the focus on implication of temporal logic formulae, the link to concrete-to-

abstract trace inclusion is very strong. It has to be remembered though that operation names do not
figure in the notion of trace relevant to TLA+ and that TLA+ traces are stuttering invariant.

Composition: An easy consequence of the focus on implication, with its insistence that local
variables must be quantified, is the fact that independently derived refinements (presumed to refer to
distinct free variables), can be composed, the quantification of local variables acting in a manner very
like the equivalences in ASM refinement, in preventing clashes.

4. Semantic Variety

The preceding subsections briefly overviewed a number of well-known model oriented refinement

paradigms. Even from this cursory look, it is easy to be struck by how so many of the detailed issues
we have highlighted can be seen to be mere design decisions about one or other aspect of the
methodology in question. In this sense, it is often the case that one has a choice about how some
particular issue in some particular formalism, might be handled. The fact that we note that there can be
a choice is not intended to imply that the choice is made on a whim. In practice the choices are
typically governed by the higher level concerns that drive the design of the refinement notion.

In truth, the degree to which such choice arises is significantly controlled by the extent to which the
refinement notion is derived in a ‘monolithic way’. Thus in RAISE, preservation of abstract properties
determines a host of other details uniquely; in TLA+ and IO-automata, implication and trace inclusion
have a similar, though a not quite as far-reaching, effect. On the other hand, the formalisms treated
earlier in Section 3 could more easily be assembled out of smaller pieces, allowing greater scope for
replacing a design decision about some aspect with an alternative. We mention a few such potential
design realignments for purposes of illustration.

• Regarding Z, one could easily imagine its notion(s) of correctness being substituted by the ones
from Event-B or ASM. Its notion of trace inclusion would then be replaced by one not requiring the
use of ‘fictitious’ transitions generated by totalisation. Further options include the VDM or IO-
automata notions of correctness. In fact, alternatives for what we have here called notions of
correctness for Z, have been explored in [43] and related publications.

• For B, one could easily imagine adding ⊥ elements to state spaces etc. in order to obtain a
different relational semantics, with fewer ‘fictitious’ transitions.

• For Event-B and ASM one could imagine bringing in some aspects of the Z modelling, though it
appears that little would be gained by doing so. Alternative correctness ideas from IO-automata or
TLA+ could easily be contemplated.

• It would not be hard to replace VDM’s notion of correctness by Z’s, B’s, Event-B’s, ASM’s or
IO-automata’s, thus altering the balance between abstract and concrete models. In fact, the constraints
of the VDM functional retrieve relation framework were relaxed in Nipkow’s modified fidelity rule
[44], making it much like the Event-B rule.

• One could take RAISE’s policy on property preservation as the fundamental criterion, and by
formulating suitable notions of ‘property’ in the other formalisms, rebuild their notions of refinement
in that light. Given RAISE's monolithic approach of doing everything via properties, there is less scope
for low level detailed ‘fiddling’, but if one discarded the monolithic property approach, then the
semantic framework of RAISE could easily host a wide variety of alternative views.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

44

• One could take the IO-automata reachability criterion on the abstract states that must simulate, and
transplant it painlessly to other formalisms. Equally one could import various different criteria on
correctness and fidelity from other formalisms into IO-automata without difficulty.

• One could take TLA+'s policy on implication of temporal logic formulae as the fundamental
criterion, and re-interpret it in a variety of other formalisms.

Of course such ideas are not new. In many instances, alternatives of one kind or another have been
investigated, whether in the normal research literature or as student research projects. Although we do
not attempt to catalogue all the variations that have been considered over the years, two, both
connected with B, are worth noting for their practical impact.

One is found in the context of ProB [45], a model checker and animator for the B-Method first
implemented for original B. There, the original B preconditions are re-interpreted as (i.e. given the
semantics of) additional guards. Such a move is needed to ensure that the theoretical constructions at
the heart of model checking remain valid.

The other is found in the context of the Météor Project [46], where the semantics of original B was
modified to explicitly check well-definedness conditions for applications of (partial) functions, using
techniques going back to Owe [47]. This was in recognition of the need to be more careful about
domains of partial functions and operations in the context of a safety-critical application. In Event-B, a
more recent development, such checks are built in ab initio, and Event-B’s semantics fits model
checking needs much better too.

What the above variety, and the associated remarks, make clear, is that there is no unique consensus
about what constitutes model based refinement. Different setups are created with different kinds of
requirements scenarios either explicitly or implicitly in mind, and the resulting formalisms are
promoted as being relatively general purpose, a view that holds up as long as a requirements scenario
that does not differ too markedly from the initial ones is not encountered. If a sufficiently different
requirements scenario is encountered, then a common reaction (at least in the research literature) is to
invent a new model based refinement paradigm, better suited to the scenario at hand. In more industrial
environments, the reaction may well be to ‘make do’ as best one can, or to quietly decide not to bother
with formal techniques in future.

In the light of this variety, one thing that we can do, is to look for areas of commonality between the
different formulations. We can take the view that the more commonly a particular feature or design
decision occurs amongst different frameworks, the more it contributes to the ‘essence’ of model based
techniques. Conversely if a feature is only rarely found, it is easier to justify trading it for an
alternative. Roughly speaking, it is the intersection rather than the union of features among different
frameworks that we focus on.

To this aim, one cannot help notice that the area most free from excessive variation has been what
we call the ‘concrete-abstract fidelity’ area. This indicates a strong consensus among approaches that
simulation (in one form or another) is the key criterion that techniques must establish.

One cannot help further notice that the places where the greatest semantic variety is to be found,
occur in the ‘notions of correctness’ and ‘interpretation’ areas. One can attribute a lot of this variation,
to different views on the extent to which the abstract model should dictate what the concrete model
does. In other words, does the abstract system demand that the concrete one furnishes some (suitable)
counterpart to every behaviour it is capable of, or does the abstract system merely provide a container
beyond which the concrete one is not allowed to stray? Different views on what refinement is for,
heavily influence the preference for one or the other perspective.

On this point, one can argue both ways. Demanding that the abstract system demands concrete
compliance, ensures requirements coverage (suitably interpreted), but clutters the formalism with
(possibly many) additional POs; ones, moreover, that can have a detrimental effect on trace inclusion
unless one is particularly careful. Not demanding that the concrete system cover every move of the
abstract one frees the formalism from many extra POs, and is helpful for trace inclusion, but potentially
lets through the possibility of explicitly empty (including syntactically contradictory) implementations,
resting on the ‘don't care’ discharge of the implication at the heart of any fidelity PO, when its

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

45

hypothesis is false. One could counter this by saying that no one would entertain an explicitly empty
implementation, but then, inadvertently ending up with one that was semantically empty, by virtue of
hiding a contradiction within the labyrinth of a large syntactic description, can happen much more
easily. Also, the more developers rely on tools, the more likely they are to become personally
inattentive, slipping easily into the mode of believing all is well just because a tool has said ‘OK’, even
if it was on the basis of an unsatisfiable hypothesis. Matters are made more complicated in the latter
case by virtue of the fact that a code generator working on such an implementation definition (i.e. one
that was contradictory in this way) would not be sensitive to its semantic emptiness, and, blissfully
unaware, could generate a lot of code, large amounts of which would actually be entirely useful.

It becomes clear why there is so much variation in views around the issue of notions of correctness.
By contrast, other issues from Section 2, such as ‘formal language’, ‘granularity and naming’ and
‘trace inclusion’, ‘composition’, can be seen as either setting the stage for creating a given framework,
or as derivable consequences of the design decisions taken.

5. Retrenchment

The previous sections dissected what goes into a typical model based refinement framework. We

saw that each such notion examined, depended on a number of design decisions about various aspects
of the development process. The trouble with this is that, once these design decisions are made,
formalisation casts them in stone to a large degree. At some later point, along comes a case study for
which the previously made decisions turn out to be less than optimal. Then, a struggle can ensue to
make the problem fit the technique. The result can be successful, or not, to varying degrees.

Retrenchment was invented as a response to the phenomenon that a given refinement technique (or
even refinement techniques in general) do(es) not always fit all application scenarios in which the
rigour characteristic of such techniques is desirable, and that consequently, some means of reconciling
those aspects of the application that did not fit well into the selected refinement technology with those
that did, was desirable. And the greater the rigour that could be brought to bear on this issue the better.
Although retrenchment arose in the context of the B-Method [48], it seemed evident, even at the outset,
that one should design similar notions for other approaches too. With the accumulated experience of
the intervening years, we can now set out how to do this.

Notions of refinement are intended to give a priori guarantees that the more concrete model
conforms in a certain way to the abstract one. Often it is glibly stated that ‘the concrete model
preserves all the properties of the abstract model’ but this is palpably false unless one makes the
technical terms in the remark, such as ‘all’ and ‘properties’, quite precise, and either proves a suitable
theorem, or takes the ensuing statement as the definition of refinement and derives the consequences
(as in the RAISE approach). Security properties usually provide the quickest route to demolishing such
too-loosely-phrased ‘property preservation’ statements [49].

By contrast, the role of retrenchment is not so much to propose a priori properties ―recognising
that it would be almost impossible to predetermine every possible way in which the formulation of a
refinement notion might prove inconvenient in practice― and much more to provide a framework
within which such incompatibilities might be described in general terms, and linked in a formal way to
what the refinement notion can accomplish. Often it will be true that particular, much stronger,
properties might follow in a specific application area, but it is better (from the real world developer’s
perspective) to have these emerge as a strengthening of the general theory of retrenchment, than to
develop a special purpose theory whose remit, in practice, might be confined to just that case ―
bringing into being therefore as it would, the necessity of developing an alternative theory for every
different problem.

5.1. Key Features of Retrenchment Designs

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

46

Above, we saw that what the overwhelming majority of model based refinement notions had in
common, was the concrete-abstract fidelity criterion. Given that what we seek in retrenchment is the
maximum flexibility of expressiveness, and yet we have to keep something relatively fixed (else it is
difficult to speak of a single unifying notion), we make the concrete-abstract fidelity criterion the
predominant focus of retrenchment designs.

Equally, we saw above that there was a wide variety of views in what we referred to as the ‘notions
of correctness’ area, which could be viewed as arising by adopting a corresponding variety of
subsidiary design decisions, and adding their consequences to the fidelity PO. Since the consequences
of adopting different design decisions in this area are often incompatible with each other, we determine
that retrenchment should not be prescriptive in this area, in order to maximise the applicability of
general retrenchment principles to a wide variety of domains, with different domains exhibiting
different perspectives on how the theory connects with reality.3

Thus, retrenchment should align with refinement where there is a high degree of commonality of
views, in order to enhance interworking, and should desist from committing itself where there is a high
degree of diversity of views, acting in the latter case, as a counterbalance to the excessive specificity
that would otherwise arise.

A further guiding principle that we would like to see embodied in retrenchment, is that its fidelity
PO should reduce to (the appropriate version of) the refinement fidelity PO under suitable
circumstances, i.e. when the requirements issues that it is designed to cover trivialise.

The means by which retrenchment achieves all these things is to modify the fidelity PO of
refinement, to gain greater expressivity. As we have seen, refinement fidelity POs, across all the
formalisms reviewed, come down to an implicative structure, based on re-establishing a retrieve
relation. Accordingly, retrenchment modifies this by introducing a number of additional relations into
the fidelity PO: a within relation W that strengthens the hypotheses of the implication, to restrict the
scope of the statement, where needed; an output relation O strengthening ‘good’ outcomes in the
conclusion by permitting the incorporation of detail not expressible within the constraints of the
refinement formalism; and a concedes relation C in the conclusion, occurring disjunctively, to allow
the description of behaviours that violate the retrieve relation. In ‘formalism-independent’ terms, the
generic fidelity PO that emerges has the appearance of the TLA+ case below, assuming one ignores
any TLA+-specific connotations.

Since the justification for this general approach has been extensively discussed elsewhere in an
abstract setting (see e.g. [6-7]), and its utility has been well borne out in case studies, notably those
concerning the Mondex Purse (see e.g. [50-53]}) we do not repeat all that here, concentrating instead
on checking how the general ideas fit with the specific formalisms we have looked at. We note though,
that letting W and O to default to true and C default to false does indeed yield the desired continuity
with refinement notions in the I/O-free case.4

5.2. Tower Compatibility

Thus far, we have concluded that retrenchment should concentrate on a modified fidelity PO, and

largely disregard ‘notions of correctness’ criteria, supporting this stance using predominantly heuristic

3 In the early days of retrenchment, when [48] and similar papers were written, it was presumed that
retrenchment ought to make suitable demands regarding notions of correctness and the like. It took a
considerable time, conclusively confirmed by experience with the Tower Pattern (see Section 5.2), to
convince us that such a position, while tenable, was nevertheless ill advised. One might conjecture that
just as the most problematic errors in system design arise from missing requirements, so the subtlest
problems in designing system design methodologies can be attributed to determining what
requirements ought to be missing.
4 Where there is I/O, W and O default to the ‘natural’ correspondences between the input spaces and
output spaces respectively.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

47

evidence. This position is considerably strengthened when we consider refinement/retrenchment
interworking.

Besides the retrenchment fidelity PO defaulting to the refinement one when W, O, C, suitably
trivialise, we need to consider how retrenchment and refinement co-operate during the course of a
system development in which each participates non-trivially. The key criterion here is Tower
Compatibility, and it refers to the conditions that must hold in order to avoid the interpretational
pathologies of some of the refinement approaches, and in order that the basic constructions of the
Tower Pattern can be established.

The Tower Pattern itself is built out of ‘commuting’ squares of refinements and retrenchments, such
as occur in the figure below. In the figure, refinements are vertical arrows (RefAC and RefBD, going from
the abstract system to the concrete one), and the retrenchments are horizontal arrows (RetAB and RetCD,
also going from the abstract system to the concrete one). The ‘commuting’ nature of the diagram
expresses the compatibility between the two notions that we seek. We said ‘commuting’ in inverted
commas because the precise sense in which commutativity is intended, and the extent to which it is
actually achieved (in a given collection of theoretical results) varies, depending on the precise
theoretical direction taken. In [54], a suite of ‘square completion’ results was proved that interpreted
commutativity as equality ‘on the nose’ of the two retrenchments resulting from composing the
retrenchment/refinement pairs going round the square in two ways from system A to system D.
Although superficially appealing, the technical details of pursuing this approach turned out to be eye-
wateringly complicated. More recently, the question has been revisited in [55]. There, the
commutativity was interpreted as compatibility of the two retrenchments resulting from composing the
retrenchment/refinement pairs going round the square, in the sense that each of the composed pairs
expressed a part of a larger retrenchment from A to D. The latter could in turn be calculated from the
two composed the retrenchment/refinement pairs using a form of composition of retrenchments called
fusion composition (see [55] for details). The technical complexity of constructing the square
completions using this approach (and of associated technical issues whose details need not concern us
here) was dramatically reduced.

Both investigations showed that a simple criterion facilitated retrenchment/refinement interworking.

Stated informally and in generic terms, it amounts to the statement that the within relation must be
stronger than any criterion that contributes to the definition (in terms of before-states and inputs) of
‘well behaved’ transitions in either the abstract or concrete system. This is the Tower Compatibility
PO. A ‘formalism-independent’ statement of it resembles the TLA+ case below, assuming one ignores
the TLA+-specific connotations. However, it is to be noted that since it constitutes the interface
between retrenchment notions and the rather varied ‘correctness’ notions of a variety of refinement
formalisms, there is more variation among the specific incarnations of the Tower Compatibility PO
than among those of the fidelity PO, as we see below.

To elaborate a little further, in the formalisms we surveyed briefly above, we often encountered
entities such as preconditions, termination conditions, guards, etc. They were all expressible using
predicates in the before-states (and inputs). Moreover, different refinement notions contained different
numbers of these entities, and their precise behaviour in the passage from abstract to concrete system

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

48

also varied considerably. The Tower Compatibility criterion says that no matter what the number or
demanded behaviour in relation to the refinement notion under consideration is of these entities, the
within relation for the associated notion of retrenchment, must be stronger than every such entity.
Further illustration of the concept is best done in the context of some specific notions of retrenchment,
to which we turn next.

6. Retrenchment Designs for Various Refinement Notions

Thus, we have come to the conclusion that retrenchment should comprise a fidelity PO compatible

with the one used for refinement, and a compatibility condition for tower interworking. To this we add
an initialisation PO like the standard refinement one. We now review how this works out for the
refinement notions examined above. Further general background can be found in [6-7].

6.1. Retrenchment for Z

The Z version of retrenchment has been extensively exercised in the context of the Mondex

retrenchment case studies [50-53]. In Z, retrenchment amounts to the initialization PO:5

(∀ CState'(v') • CInit'(v') ⇒ (∃ AState'(u') • AInit' (u') ∧ R'(u',v')))

and the fidelity PO:

(∀ AState(u) ; CState(v) ; CState'(v') • R(u,v) ∧ WOp(u,v) ∧ COp(v,v')
 ⇒ (∃ AState'(u') • AOp(u,u') ∧ ((R'(u',v') ∧ OOp(u',v',u,v)) ∨ COp(u',v',u,v))))

Added to the above is the tower compatibility condition, which comes out as:

(∀ AState(u) ; CState(v) • R(u,v) ∧ WOp(u,v) ⇒ pre AOp(u) ∧ pre COp(v))

with evident addition of (input state schemas and) input variables to WOp(u,v) when I/O is present.

6.2. Retrenchment for B

For original B, the fidelity PO is an adaptation of the relevant refinement condition:

AInv(u) ∧ R(u,v) ∧ CInv(v) ∧ WOp(u,v)
 ⇒ [COp(v,v')] ¬ [AOp(u,u')] ¬ ((R(u',v') ∧ OOp(u',v' …)) ∨ COp(u',v' …))

However, compared with the refinement version, the above conceals a few subtleties. First of all, we
have separated the two roles of CInv(v): namely to act as the intrinsic invariant of the concrete system,
and to act as the retrieve relation between abstract and concrete. The former role is still called CInv(v)
while the latter is covered by new predicate R(u,v) explicitly. Secondly, predicate transformers
transform after-values of state variables into before-values. To enable relationships involving both to
be expressed (as in OOp(u',v' …) and COp(u',v' …)), one must use auxiliary variables, introducing
defining occurrences for them in WOp(u,v) for the before-values, and reference occurrences in
OOp(u',v' …) and COp(u',v' …), a standard B trick, indicated by the ellipsis. Thirdly, one must use

5 Since the initialisation PO is defined to be identical to that for (the relevant notion of) refinement, a
policy persists unchanged through all the formalisms we cover, we will not mention initialisation
further below.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

49

similar devices to model I/O: variables that are referenced but not updated for input, and variables that
are updated but not referenced for output.

Added to this is the tower compatibility condition (with the obvious signature embellishment when
I/O is present), which is more complex than for other formalisms, since preconditions and guards are
(at least partly) independent in original B:

AInv(u) ∧ R(u,v) ∧ CInv(v) ∧ WOp(u,v)
 ⇒ trm AOp(u) ∧ trm COp(v) ∧ grd AOp(u) ∧ grd AOp(v)

6.3. Retrenchment for Event-B

Retrenchment for Event-B has been treated in fair detail in [56-57]. Here we just summarise the

essentials for comparison with other formalisms. Compared to original B, retrenchment for Event-B is
considerably simpler conceptually, due to the possibility of referring to both before- and after-variables
in the same expression, without recourse to ‘back-door’ techniques such as auxiliary variables. The
fidelity PO is straightforwardly relational:

(∀ u, v, v' • AInv(u) ∧ R(u,v) ∧ CInv(v) ∧ WEv(u,v) ∧ GCEv(v) ∧ CEv(v,v')
 ⇒ (∃ u' • AEv(u,u') ∧ ((R(u',v') ∧ OEv(u',v',u,v)) ∨ CEv(u',v',u,v))))

In this we again separated retrieving properties from concrete invariant properties. Since Event-B

encourages seeing I/O variables as being on the same footing as state variables, i.e. there is no specific
category of output variables, the presence of OEv becomes almost dispensible (and in fact [56] develops
the OEv-free version of the theory in detail). However, if one wants the PO to guarantee some
strengthening of the retrieve relation via the PO, then recourse to OEv is needed. If all that is desired is
a convenient container into which one can put some provable facts, then CEv by itself will do (the issue
is discussed further in [6]). The tower compatibility condition is:

AInv(u) ∧ R(u,v) ∧ CInv(v) ∧ WOp(u,v)
 ⇒ grd AOp(u) ∧ grd AOp(v)

6.4. Retrenchment for ASM

For ASM, the main difference compared with preceding formalisms is brought about due to the fact

that we deal with (m,n) diagrams, rather than (1,1) diagrams. This introduces additional quantifications
not present elsewhere. Let CFrags be the set of concrete execution fragments that we have previously
determined will permit a covering of all concrete execution sequences of interest (and thus whose
simulation will guarantee strong trace inclusion). We write v::vs::v' ∈ CFrags to denote an element of
CFrags starting with v, ending with v', and with intervening state sequence vs. Then the ASM fidelity
PO for retrenchment becomes:

(∀ u, v, vs, v' • v::vs::v' ∈ CFrags ∧ u ≡ v ∧ WAOps,COps(u,v) ∧ COps(v::vs::v')
 ⇒ (∃ us, u' • AOps(u::us::u') ∧ ((u' ≡ v' ∧ OAOps,COps(u',v',u,v)) ∨ CAOps,COps(u',v',u,v))))

In this, ≡ is the ASM retrieve relation equivalence between abstract and concrete state spaces discussed
earlier, and COps(v::vs::v') is a concrete fragment that we need to simulate, where v::vs::v' ∈ CFrags is
the sequence of states in the concrete part of the (m,n) diagram. Similar notations hold at the abstract
level. Since us and u' are existentially quantified inside the outer quantification, both the length of
u::vs::u' and the abstract operations involved, depend in detail on the concrete fragment chosen. The
within, output and concedes relations, now depend on both sequences of operations AOps and COps,

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

50

since there is no predefined naming convention in force between abstract and concrete names.
Moreover, the output and concedes relations have been shown as depending only on the extreme
abstract and concrete states; a more detailed dependence on the internal states can obviously be
demanded, especially since, in practice, the given relation would be proved by examining
corresponding concrete and abstract behaviours in detail. Again, I/O can be added unproblematically.

Finally, the tower compatibility condition becomes:

u ≡ v ∧ WAOps,AOps(u,v) ⇒ dom AOps(u) ∧ dom COps(v)

6.5. Retrenchment for VDM

For VDM, there is little change compared with the relational worlds of Z and Event-B, except for

the stronger assumptions in force regarding the retrieve function, namely: totality, adequacy, and (of
course) the fact that it is required to be an actual function. Building all this, as appropriate, into the
fidelity PO, we get:

(∀ u, v, v' • u = R(v) ∧ WOp(u,v) ∧ post-COp(v,v')
 ⇒ (∃ u' • post-AOp(R(v), u') ∧ ((u' = R(v') ∧ OOp(u',v',u,v)) ∨ COp(u',v',u,v))))

and tower compatibility reduces to:

u = R(v) ∧ WOp(u,v) ⇒ pre-AOps(u) ∧ pre-COps(v)

The consequences of introducing explicit I/O into these relations are easy to imagine.

6.6. Retrenchment for RAISE

As we said earlier, RAISE is a very broadly based formalism. On the basis that appropriate

observers are formulated to enable transitions to be described and reasoned about, the refinement
criterion for the model-based part is very VDM-like. Accordingly, the retrenchment notion that will be
appropriate will be as for VDM, so we do not quote it again.

6.7. Retrenchment for IO-Automata

We noted above that the IO-automata notion of refinement reduced to a special case of ASM

refinement. Therefore the corresponding retrenchment notion will specialise the ASM notion too.
Bearing in mind that there is always exactly one concrete step COp(v,v') involved, the fidelity PO
becomes:

(∀ u, v, v' • R(u,v) ∧ WAOps,COp(u,v) ∧ COp(v,v')
 ⇒ (∃ us, u' • AOps(u::us::u') ∧ ((R(u',v') ∧ OAOps,COp(u',v',u,v)) ∨ CAOps,COp(u',v',u,v))))

while tower compatibility becomes a slight modification of the ASM version:

R(u,v) ∧ WAOps,COp(u,v) ⇒ dom AOps(u) ∧ dom COp(v)

6.8. Retrenchment for TLA+

We noted above that the TLA+ refinement notion was based on implication of temporal logic

formulae, a requirement that demands the inclusion of concrete observable behaviour within the

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

51

observable behaviour permitted for the abstract system. This is a quite pure notion of ‘black box’
refinement. Retrenchment however, is chiefly concerned with expressing, in a ‘glass box’ manner,
refinement-theoretic incompatibilities that arise during development in real world scenarios [6]. This
makes insisting on implication between TLA+ formulae, into an inappropriate criterion on which to
base a corresponding definition of retrenchment, without making it unduly restrictive. Accordingly, the
most appropriate notion of retrenchment for TLA+ utilises the pure transition system formulation given
in [6], for which the fidelity PO is:

(∀ u, v, v' • R(u,v) ∧ WOp(u,v) ∧ COp(v,v')
 ⇒ (∃ u' • AOp(u,u') ∧ ((R(u',v') ∧ OOp(u',v',u,v)) ∨ COp(u',v',u,v))))

To this we add the tower compatibility PO:

R(u,v) ∧ WOp(u,v) ⇒ dom AOp(u) ∧ dom COp(v)

We observe that both of these work at the level of individual steps, so any interaction with stuttering

must be taken care of at a level meta- to the one figuring in the POs above.
Of course, thinking about stuttering unavoidably warrants thinking about execution sequences, and

about the fact that our POs do not offer any guarantees that any kind of inductive correspondence can
be constructed between concrete and abstract executions without additional assumptions. Such
questions concern the mapping of system properties under retrenchment, a topic outside the scope of
this paper.

7. Discussion and Conclus ions

In this paper, we have examined some key features of a representative number of well-known

refinement methodologies, and commented on their similarities and differences. We noted that many
features were not especially specific to the methodologies in which they were found, and that we could
just as easily transplant them elsewhere ― the one notable exception to this perhaps being RAISE,
with its monolithic derivation of everything from the idea of formal property preservation.

We took the evidence accumulated thereby, and used it to support the way that retrenchment is
formulated in general, and showed how this policy could be made concrete in the refinement
methodologies previously examined. This general analysis of retrenchment, and its unified detailing in
the specific methodologies mentioned, constitute the main contributions of this paper. The high degree
of similarity among the various specific notions, upholds a view that the essence of retrenchment has
been correctly identified. Additional supporting leverage for the way that retrenchment has been
formulated came from the algebraic theory of the Tower Pattern, which supplied crucial extra insight
relevant to the ‘notions of correctness’ area, the place where the widest diversity of detailed views is
typically found.

The clean interaction between refinement and retrenchment is vital for practical working in general,
and for support by tools in particular. The Frog tool [58-59] is an experimental tool whose design
incorporates the flexibility needed to smoothly integrate the POs of refinement and retrenchment in the
manner suggested, and so, shows the path that more industrial strength tools could follow. Such a tools
strategy is also in harmony with the call for an Evidential Tool Bus [60]. This is a tools framework
which would allow different tools, focusing on different aspects of verification, to communicate their
findings to other tools, and to include other tools’ results in their own deliberations. Moreover, the
tools strategy being advocated is also in harmony with the currently active Verification Grand
Challenge [2-4], whose remit is not only to put large scale verification case studies into the public
domain, so as to promote the uptake of formal techniques in general, but also to aid tool integration, so
that industrial scale formal development can be done with increasing cost effectiveness.

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

52

References

[1] de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their

Comparison, Cambridge University Press (1998).
[2] Jones, C., O’Hearne, P., Woodcock, J.: Verified Software: A Grand Challenge. IEEE Computer

39(4), (2006) 93–95.
[3] Woodcock, J.: First Steps in the The Verified Software Grand Challenge. IEEE Computer 39(10),

(2006) 57–64.
[4] Woodcock, J., Banach, R.: The Verification Grand Challenge. JUCS 13(5), (2007) 661–668.
[5] Banach, R.: Model Based Refinement and the Tools of Tomorrow. In ABZ 2008: Volume 5238 of

LNCS., Springer (2008) 42–56.
[6] Banach, R., Poppleton,M., Jeske, C., Stepney, S.: Engineering and Theoretical Underpinnings of

Retrenchment. Sci. Comp. Prog. 67 (2007) 301–329.
[7] Banach, R., Jeske, C., Poppleton, M.: Composition Mechanisms for Retrenchment. J. Log. Alg.

Prog. 75, (2008) 209–229.
[8] Börger, E., Stärk, R.: Abstract State Machines. A Method for High Level System Design and

Analysis. Springer (2003).
[9] ISO/IEC 13568: Information Technology ― Z Formal Specification Notation ― Syntax, Type

System and Semantics: International Standard. (2002) http://www.iso.org/iso/en/ittf/PubliclyAvailable
Standards/c021573_ISO_IEC_13568 2002(E).zip .

[10] Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall (1996).
[11] Derrick, J., Boiten, E.: Refinement in Z and Object-Z. FACIT. Springer (2001).
[12] Spivey, J.: The Z Notation: A Reference Manual. Second ed. Prentice-Hall International (1992).
[13] Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z Refinement Proof Rules. Technical Report

YCS-2002-347, University of York (2002).
[14] Groves, L.: Practical Data Refinement for the Z Schema Calculus. In: ZB 2005: Formal

Specification and Development in Z and B. Volume 3455 of LNCS., Springer (2005) 393–413.
[15] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996).
[16] Lano, K., Haughton, H.: Specification in B. Imperial College Press (1996).
[17] Habrias, H.: Specification Formelle avec B. Hermes Sciences Publications (2001).
[18] Schneider, S.: The B-Method. Palgrave (2001).
[19] Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press

(2010).
[20] Rodin. European Project Rodin (Rigorous Open Development for Complex Systems) IST-511599

http://rodin.cs.ncl.ac.uk/ .
[21] The Rodin Platform. http://sourceforge.net/projects/rodin-b-sharp/ .
[22] Schellhorn, G.: Verification of ASM Refinements Using Generalised Forward Simulation. J.UCS

7(11) (2001) 952–979.
[23] Börger, E.: The ASM Refinement Method. Form. Asp. Comp. 15 (2003) 237–257.
[24] Banach, R.: On Regularity in Software Design. Sci. Comp. Prog. 24 (1995) 221–248.
[25] Jones, C.: Systematic Software Development Using VDM. Prentice-Hall (1990) Second edition.
[26] Woodman, M., Heal, B.: Introduction to VDM. McGraw-Hill (1993).
[27] Fitzgerald, J., Gorm Larsen, P.: Modelling Systems: Practical Tools and Techniques for Software

Development. Cambridge University Press (1998)
[28] Dawes, J.: The VDM-SL Reference Guide. UCL Press/Pitman Publishing, London (1991).

http://www.iso.org/iso/en/ittf/PubliclyAvailable%20Standards/
http://www.iso.org/iso/en/ittf/PubliclyAvailable%20Standards/
http://rodin.cs.ncl.ac.uk/
http://sourceforge.net/projects/rodin-b-sharp/

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

53

[29] ISO/IEC 13817-1:1996 Amended by INCITS/ISO/IEC 13817-1-1996: Vienna Development
Method – Specification Language – Part 1: Base language. (1996).

[30] The RAISE Language Group: The RAISE Specification Language. The BCS Practitioners Series.
Prentice-Hall (1992)

[31] RAISE Method Group: The RAISE Method Manual. Prentice Hall (1995).
[32] Bjorner, D.: Software Engineering. Springer (2006) (Vols. 1-3).
[33] Futatsugi, K., Goguen, J., Jounnaud, J.P., Meseguer, J.: Principles of OBJ-2. In: Formal Methods,

A.C.M. (1985) 52–66
[34] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985).
[35] Paulson, L.C.: ML for the Working Programmer. C.U.P. (1996) 2nd. Edition.
[36] Lynch, N., Tutle, M.: Hierarchical Correctness Proofs for Distributed Algorithms. In: A.C.M.

Symposium on Principles of Distributed Computing, A.C.M. (1987) 137–151. Also M.I.T. Tech.
Report MIT/LCS/TR-387.

[37] Lynch, N., Vaandrager, F.: Forward and Backward Simulations—Part I: Untimed Systems. Inf.
and Comp. 121(2) (1995) 214–233 Also M.I.T. Tech. Memo MIT/LCS/TM-486.b.

[38] Lynch, N., Merritt, M., Weihl, W., Fekete, A.: Atomic Transactions. Morgan Kaufmann (1994).
[39] Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996).
[40] Lamport, L.: Specifying Systems, the TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley (2002).
[41] Lamport, L.: The Temporal Logic of Actions. A.C.M. Trans. Prog. Lang. Sys. 16(3) (1994) 872–

923.
[42] Abadi, M., Lamport, L.: The Existence of Refinement Mappings. Theoretical Computer Science

82 (1991) 253–284.
[43] Derrick, J., Boiten, E.: Relational Concurrent Refinement. Form. Asp. Comp. 15 (2003) 182–214.
[44] Nipkow, T.: Non-deterministic Data Types: Models and Implementations. Acta Inf. 22(6) (1986)

629–661.
[45] Leuschel, M., Butler, M.: ProB: A Model Checker for B. In Araki, K., Gnesi, S., Mandrioli, D.,

eds.: Formal Methods 2003. Volume 2805 of LNCS., Springer (2003) 855–874.
[46] Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A Successful Application of B in a

Large Project. In Wing, J. and Woodcock, J. and Davies. J, ed.: Formal Methods 1999. Volumes
1708, 1709 of LNCS., Springer (1999) 369–387.

[47] Owe, O.: Partial Logics Reconsidered: A Conservative Approach. Form. Asp. Comp. 3 (1993) 1–
16.

[48] Banach, R., Poppleton, M.: Retrenchment: An Engineering Variation on Refinement. In Bert, D.,
ed.: 2nd International B Conference. Volume 1393 of LNCS., Springer (1998) 129–147.

[49] Jacob, J.L.: Basic Theorems about Security. J. Computer Security 1 (1992) 385–411.
[50] Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Finite Sequence

Numbers, and the Tower Pattern. In Fitzgerald, J., Hayes, I., Tarlecki, A., eds.: Formal Methods
2006. LNCS, Springer (2005) 382–398.

[51] Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Finite Exception Logs,
and Validating the Small. In Hinchey, M., ed.: IEEE/NASA Software Engineering Workshop 30-
06. (2005) 234–245.

[52] Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Hashing Injective
CLEAR Codes, and Security Properties. In: IEEE ISOLA 2006 (2006) 82–90.

[53] Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: The Balance Enquiry
Quandary, and Generalised and (1,1) Forward Refinements. Fundamenta Informaticae. 77 (2007)
29–69.

[54] Jeske, C.: Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of
Manchester (2005).

International Journal of
Soft Computing and Software Engineering (JSCSE)

Vol.5, No.2, 2015

e-ISSN: 2251-7545
DOI: 10.7321/jscse.v5.n2.1

54

[55] Banach, R., Jeske, C.: Retrenchment and Refinement Interworking: the Tower Theorems.
Mathematical Structures in Computer Science. 25 (2015), 135–202.

[56] Banach, R.: UseCase-wise Development: Retrenchment for Event-B. In ABZ 2008: Volume 5238
of LNCS., Springer (2008) 167–180.

[57] Banach, R.: Retrenchment for Event-B: UseCase-wise Development and Rodin Integration. Form.
Asp. Comp., 23 (2011) 113-131.

[58] Fraser, S., Banach, R.: Configurable Proof Obligations in the Frog Toolkit. In: 5th IEEE
International Conference on Software Engineering and Formal Methods. IEEE Computer Society
Press, IEEE (2007) 361–370.

[59] Fraser, S.: Mechanized Support for Retrenchment. PhD thesis, School of Computer Science,
University of Manchester (2008).

[60] Rushby, J.: Harnessing Disruptive Innovation in Formal Verification. In: 4th IEEE International
Conference on Software Engineering and Formal Methods. IEEE Computer Society Press, IEEE
(2006) 21–28.

	Abstract. The ingredients of typical methodologies for model based development via refinement are re-examined, and some well-known frameworks are reviewed, drawing out commonalities and differences. It is observed that the ingredients of these formali...

