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Abstract. The ingredients of typical methodologies for model based development via 
refinement are re-examined, and some well-known frameworks are reviewed, drawing out 
commonalities and differences. It is observed that the ingredients of these formalisms can 
frequently be ‘mixed and matched’ much more freely than is often imagined, resulting in 
semantic variations on the original formulations. It is also noted that similar alterations in the 
semantics of specific formalisms have taken place de facto due to applications pressures and 
for other reasons. This analysis suggests prioritising some criteria and proof obligations over 
others within this family of methods. These insights are used to construct a foundation for the 
design of notions of retrenchment appropriate for, and complementary to, given notions of 
refinement. The notions of retrenchment thus derived for the specific refinement formalisms 
examined earlier, namely Z, B, Event-B, ASM, VDM, RAISE, IO-automata and TLA+, are 
presented, and within the criteria given, all turn out to be very similar. 
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1. Introduction 

 
Refinement, as a model based methodology for developing systems from abstract specifications, has 

been around for a long time [1]. In this period, many variations on the basic idea have arisen, to the 
extent that an initiate can be bewildered by the apparently huge choice available. As well as 
mainstream refinement methodologies such as ASM, B, Z, VDM, RAISE, IO-automata, TLA+ etc., 
which have enjoyed significant applications use, there are a myriad of other related theories in the 
literature, too numerous to cite comprehensively. And at a detailed theoretical level, they are all 
slightly different. 

From a developer's point of view, this variety can only be detrimental to the wider adoption of 
formal techniques in the real world applications arena — in the real world, developers have a host of 
things to worry about, quite removed from evaluating the detailed technical differences between 
diverse formal techniques in order to make the best choice regarding which one to use. In any event, 
such choice is often made on quite pragmatic grounds, such as the ready access to one or more experts 
and, crucially these days, availability of appropriate tool support. Anecdotally, the choice of one or 
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another formalism appears to make little difference to the outcome of a real world project using such 
techniques — success seems to be much more connected with proper requirements capture, and with 
organising the development task in a way that is sympathetic to both the formal technique and to the 
developers’ pre-existing development practices. 

This is not to say that the designs of different refinement notions are poorly motivated. The 
description of a typical refinement notion is justified by a number of external goals, from which 
starting point the technical details of the particular notion follow quite logically. However, it is 
frequently the case that the considerations in play here are somewhat orthogonal to the principal 
concerns of practical developers. 

In this paper we examine what goes into a typical notion of model based refinement by examining a 
number of cases. Such an analysis has a number of benefits. For one thing, it can contribute towards an 
informed point of view regarding detailed differences between techniques, and how different 
techniques might to relate to one another, especially now that verification techniques and their tools 
can increasingly address mainstream industrial scale problems. This can guide the management of 
relationships between techniques going forwards into the future, and specifically can inform a 
perspective on how tools for different techniques might relate to one another, an issue relevant to the 
(currently active) Verification Grand Challenge [2-4]. This line has been briefly explored in [5]. 

For another thing, understanding the relationships between different refinement techniques can help 
guide the design of retrenchment notions [6-7] corresponding to different variants of refinement. 
Unlike refinement, which is designed to deliver guarantees about the relationship between abstract and 
concrete systems provided appropriate conditions are met, retrenchment, a weakening or liberalisation 
of model based refinement, is designed to offer maximal expressive flexibility when refinement is 
confronted with issues that do not fit within its constraints. Thus, designing a notion of retrenchment is 
not like designing a notion of refinement: rather than choosing a number of external goals that 
constitute a notion of correctness and then deriving the technical details of the refinement, 
retrenchment has to consider how issues that break strict conformity with such correctness criteria may 
fruitfully be described. In this context, considering a number of refinement variants together helps to 
highlight how each refinement notion ought to relate to its corresponding retrenchment notion. The 
latter is in turn crucial when we realise that to gain the maximum benefit from the two techniques, a 
close interplay between them is vital. 

It is remarkable that, in large part, both of these things are supported by essentially the same body of 
evidence (at least if one approaches them in the way it is done in this paper). The things that diverse 
model based refinement notions have in common, and that thus provide a potential focus for 
convenient interworking between them at the operational level of tools and the like, also provide a 
focus for the design of retrenchment notions, since it is the common things that survive when one seeks 
to ‘liberate’ refinement, as one does with retrenchment. It is these implications for retrenchment that 
this paper explores in detail. 

The rest of the paper is as follows. In Section 2 we discuss a number of features commonly found in 
model based formalisms. Our approach is very much structured round features that turn out to be of 
interest later, rather than the way one would evaluate refinement notions per se. Thus for instance, 
while a traditional discussion of notions of correctness in the context of refinement would focus on 
issues such as termination, and partial or total correctness, our discussion omits these since they play 
no role in retrenchment — rather, what we call ‘notions of correctness’ deals with some lower level 
issues that emerge from higher level considerations. Another typical key issue for refinement notions, 
which is connected with the preceding one, is the problem of soundness and completeness of a given 
collection of proof obligations with respect to a previously stated notion of partial or total correctness. 
Again, since these issues have no counterpart for retrenchment, there is no discussion of them below. 
Similar remarks apply to safety and liveness. Continuing this line of thought, in a traditional evaluation 
of refinement notions, one might well critically examine the external motivations for setting up a 
refinement notion in the way it was done, and compare the way that similar issues were addressed in 
different formalisms, or, taking into account that different refinement notions were conceived to 
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address widely differing situations, why certain features are present in some notions but not others. But 
such considerations once more serve no purpose for us, so we do not dwell on them — it is sufficient 
for us to note the variety that we see. 

In Section 3 we show how our generalities are reflected in a number of specific well known 
approaches, namely ASM, B, Event-B, Z, VDM, RAISE, IO-automata, TLA+. Considering that in 
many of these cases the same formal framework is supported by more than one detailed theory, we 
start the discussion of each approach by citing one or more standard references which sets the context 
for the remainder of the discussion. Although we discuss eight approaches, we make no claim of 
completeness of coverage, given the large number of such formalisms that are to be found in the 
literature. Our aim is to exhibit a variety of features and the way that they compare and contrast, rather 
than to give a fully comprehensive account of each approach. A consequence of this is that when an 
approach contains one or more features sufficiently similar to ones discussed already, we tend to be 
brief in the extreme. Section 4 reflects on the evidence accumulated from all this, and draws some 
appropriate conclusions. Section 5 takes these points forward and shows how the insights gained 
should inform the design of a notion of retrenchment to complement a given notion of refinement. A 
strong element of this process is compatibility via the retrenchment Tower Pattern, discussed in 
Section 5.2. Section 6 then considers how the preceding can be instantiated in the context of the eight 
formalisms examined earlier, showing a large degree of commonality in the resulting retrenchment 
designs. The general analysis of refinement and retrenchment against broad criteria in Sections 3-6, 
and the detailed definitions of retrenchment in the specific methodologies discussed in this paper, 
constitute the main contributions of the present work. Section 7 concludes. 

 
2. Model Based Refinement Methods: Generalities 

 
A typical model based formal refinement method, whose aim is to formalize how an abstract model 

may be refined to a more concrete one, consists of a number of elements which interact in ways which 
are sometimes subtle. In this section we bring some of these facets into the light; the discussion may be 
compared to a similar one in [8]. 

 
Formal language. All formal refinement techniques need to be quite specific about the language in 

which the elements of the technique are formalised. This precision is needed for proper theoretical 
reasoning, and to enable mechanical tools with well-defined behaviour to be created for carrying out 
activities associated with the method. There are inevitably predicates of one kind or another to describe 
the properties of the abstract and concrete models, but technical means are also needed to express state 
change within the technique. Compared with the predicates used for properties, there is much more 
variety in the linguistic means used for expressing state change, although each has a firm connection 
with the predicates used for the modelling of properties. 

 
Granularity and naming. All formal refinement techniques depend on relating concrete steps (or 

collections of steps) to the abstract steps (or collections of steps) which they refine. Very often, a single 
concrete step is made to correspond to a single abstract one, but occasionally more general schemes (in 
which sequences of abstract and concrete steps figure) are considered. The (1,1) scheme is certainly 
convenient to deal with theoretically, and it is often captured by demanding that the names of 
operations or steps that are intended to correspond at abstract and concrete levels are the same. 
However, in many applications contexts, such a simple naming scheme is far removed from reality, 
and if naively hardwired into the structure of a tool, makes the tool much less conveniently usable in 
practice. 

 
Concrete-abstract fidelity. All formal refinement techniques demand that the concrete steps relate 

in a suitable manner to abstract ones. Almost universally, a retrieve relation (also referred to as a 
refinement mapping, abstraction relation, gluing relation, etc.) is used to express this relationship. It is 
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demanded that the retrieve relation holds between the before-states of a concrete step (or sequence of 
steps) and the abstract step (or sequence of steps) which simulates it; likewise it must hold for the after-
states of the simulating pair. In other words (sequences of) concrete steps must be faithful to 
(sequences of) abstract steps. (A special case, simple refinement, arises when the retrieve relation is an 
identity.) What we call concrete-abstract fidelity in this paper is more conventionally referred to as the 
forward simulation property for refinement notions. However, since in specific contexts this is often 
accompanied by other detailed criteria, we prefer a more neutral phrase here. 

Concrete-abstract fidelity is the one feature that can be found in essentially the same form across the 
whole family of model based formalisms. It is also the case that this fidelity —usually expressed using 
a proof obligation (PO), the fidelity PO— is often derived as a sufficient condition for a more abstract 
formulation of refinement, concerning the overall behaviour of ‘whole programs’. These sufficient 
conditions normally form the focus of the theory of model based refinement techniques,1 since they 
offer what is usually the only route to proving refinement in practical cases. 

 
Notions of correctness. One of the responsibilities of a formal refinement technique is to dictate 

when there should be concrete steps that correspond to the existence of abstract ones. This (at least 
implicitly) is connected with the potential for refinement techniques to be used in a black-box manner. 
Thus if an abstract model has been drawn up which deals adequately with the requirements of the 
problem, then any refinement should guarantee that the behaviour expressed in the abstract model 
should be reflected appropriately in more concrete models, and ultimately in the implementation, so 
that the requirements coverage persists through to code. Note that this is again a much more narrowly 
drawn focus for the phrase ‘notion of correctness’ than is usual. 

There is much variation among refinement techniques on how this is handled, particularly when we 
take matters of interpretation into account. Although the mainstream techniques we discuss below are 
reasonably consistent about the issue, some variation is to be found, and more variety can be found 
among refinement variants in the literature. The formal content of these perspectives gets captured in 
suitable POs, and often, the policy adopted has some impact on the fidelity PO too. A similar impact 
can be felt in initialisation (and finalisation) POs. 

 
Interpretation. The preceding referred (rather obliquely perhaps) to elements of model based 

refinement theories that are expressed in the POs of the theory, i.e. via logic. However, this does not 
determine how the logical elements relate to phenomena in the real world. If transitions are to be 
described by logical formulae (involving before and after states, say), then those formulae can 
potentially take the value false as well as true. And while determining how the logical formulae 
correspond to the real world is usually fairly straightforward in the true case, determining the 
correspondence in the false case can be more subtle. These matters of logical-to-real-world 
correspondence constitute what we call here the interpretation aspects of a formal development 
technique. 

 
Trace inclusion. Trace inclusion, i.e. the criterion that every execution sequence of the system (i.e. 

the concrete model) is as permitted by the specification (i.e. the abstract model), is of immense 
importance in the real world. When an implemented system behaves unexpectedly, the principal post 
hoc method of investigation amounts to determining how the preceding behaviour failed to satisfy the 
trace inclusion criterion. This importance is further underlined by the role that trace inclusion plays in 
model checking. The ‘whole program’ starting point of the derivation of many sufficient conditions for 
refinement is also rooted in trace inclusion. Two forms of trace inclusion are of interest. Weak trace 
inclusion merely states that for every concrete trace there is a simulating abstract one. Strong trace 
inclusion goes beyond that and states that if Asteps simulates Csteps and we extend Csteps to Csteps ; 
Cnxt, then Asteps can be extended to Asteps ; Anxt which also simulates. With weak trace inclusion, we 
                                                                 
1 They are a key ingredient of the usual soundness and completeness arguments for refinement theories. 
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might have to abandon Asteps and find some unrelated Astepsdifferent to recover simulation of Csteps ; 
Cnxt. Given the crucial role of trace inclusion, it is perhaps surprising that in many cases, the POs 
derived for refinement based formalisms do not guarantee trace inclusion without further assumptions. 

 
Composition. It is a given that large systems are built up out of smaller components, so the 

interaction of this aspect with the details of a development methodology are of some interest, at least 
for practical applications. Even more so than for notions of correctness, there is considerable variation 
among refinement techniques on how compositionality is handled — the small number of techniques 
we review in more detail below already exhibit quite a diversity of approaches to the issue. 

 
3. Some Well-Known Refinement Formalisms 

 
In this section, we review how the various elements of model based refinement methodologies 

outlined above are reflected in a number of specific and well-known formalisms. We look at Z, B, 
Event-B, ASM, VDM, RAISE, IO-automata and TLA+. For simplicity, brevity and relevance to 
retrenchment below, we stick to a forward simulation perspective throughout. 

 
3.1. Z 

 
Since Z itself [9] is simply a formal mathematical language, one cannot speak definitively of the Z 

refinement. We target our remarks on the formulations in [10-11]. 
Formal language: Z uses the well-known schema calculus, in which a schema consists of named 

and typed components which are constrained by a formula built up using the usual logical primitives. 
This is an all-purpose machinery; ‘delta’ schemas enable before-after relations that specify transitions 
to be defined; other schemas define retrieve relations, etc. The schema calculus itself enables schemas 
to be combined so as to express statements such as the POs of a given refinement theory.  

Granularity and naming: Most of the refinement formulations in [10-11] stick to a (1,1) framework. 
Purely theoretical discussions often strengthen this to identity on ‘indexes’ (i.e. names) of operations at 
abstract and concrete levels, though there is no insistence on such a close tieup in [12-13]. 

Concrete-abstract fidelity: In the above context for Z refinement, the fidelity PO comes out as 
follows, which refers to the contract interpretation without I/O (while the behavioural interpretation 
drops the ‘pre AOp’): 

 
(∀ AState(u) ; CState(v) ; CState'(v') • pre AOp(u) ∧  R(u,v) ∧  COp(v,v')       
        ⇒ (∃ AState'(u') • AOp(u,u') ∧  R'(u',v')))  
 

where AState(u), CState(v) are (abstract and concrete) state schemas in state variables u, v respectively 
(primes denote after-states), AOp(u,u'), COp(v,v') are corresponding operations, R(u,v) is the retrieve 
relation, and ‘pre AOp(u)’, the precondition, in fact denotes the domain of AOp(u,u'). 

Notions of correctness: In Z, an induction on execution steps is used in the (1,1) framework to 
derive trace inclusion. To work smoothly, totality (on the state space) of the relations expressing 
operations is assumed. To cope with partial operations, a ⊥  element is added to the state space, and 
totalisations of one kind or another, of the relations representing the operations, are applied. The 
consequences of totalisation (such as the correctness condition above), got by eliminating mention of 
the added parts from a standard forward simulation implication, constitute the POs of, and embody the 
notion of correctness for, the totalisation technique under consideration. These turn out to be the same 
for both contract and behavioural approaches, aside from the difference noted above. 

Interpretation: The two main totalisations used, express the contract and the behavioural 
interpretations. In the former, an operation may be invoked at any time, and the consequences of 
calling it outside its precondition are unpredictable (within the limits of the model of the syntax being 
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used), including ⊥ , nontermination. In the latter, ⊥  is guaranteed outside the precondition (usually 
called the guard in this context, but still defined as the domain of the relevant partial relation), which is 
typically interpreted by saying the operation will not execute if the guard is false. 

Trace inclusion: Trace inclusion has been cited as the underlying derivation technique for the POs, 
and since an inductive approach is used, it is strong trace inclusion. However, the ‘fictitious’ transitions 
of operations introduced by totalisation are treated on an equal footing to the original ‘honest’ ones, so 
many spurious traces, not corresponding to real world behaviour, can be generated. For instance a 
simulation of a concrete trace may hit a state (whether abstract or concrete) that is outside the ‘natural’ 
domain of the next partial operation. Then, in the contract interpretation, the trace can continue in a 
very unrestricted manner, despite the different way that one would view the constituent steps from a 
real world perspective. Things look a bit better in the behavioural interpretation, since such a trace is 
thereafter confined to ⊥ . 

Composition: One prominent composition mechanism to be found in Z is promotion. In promotion, 
a component which is specified in a self-contained way is replicated via an indexing function to form a 
family inside a larger system; this interacts cleanly with refinement [10-11]. However, the schema 
calculus in general is not monotonic with respect to refinement without additional caveats [14]. 

 
3.2. B 

 
The original B Method was described with great clarity in [15], and there are a number of textbook 

treatments e.g. [16-18]. 
Formal language: Original B was based on predicates for subsets of states, written in a conventional 

first order language, and on weakest precondition predicate transformers (wppts) for the operations. 
The use of predicate transformers obviates the need for explicitly adjoining ⊥  elements to the state 
spaces. 

Granularity and naming: Original B adheres to a strict (1,1) framework; ‘strict’ in the sense that 
tools for original B demand identical names for operations and their refinements. Abstract models of 
complex operations can be assembled out of smaller pieces using such mechanisms as INCLUDES, 
USES, SEES. However once the complete abstract model has been assembled, refinement proceeds 
monolithically towards code. The last step of refinement to code, is accomplished by a code generator 
which plugs together suitably designed modules that implement the lowest level B constructs. 

Concrete-abstract fidelity: This is handled via the predicate transformers. Adapting the notation of 
[15] for ease of comparison with Z, the relevant PO can be written: 

 
AInv(u) ∧  CInv(u,v) ∧  trm AOp(u) 
        ⇒ [ COp(v,v') ] ¬ [ AOp(u,u') ] ¬ CInv(u',v') 
 

In this, AInv(u) and trm AOp(u) are the abstract invariant and termination condition (the latter being the 
predicate of the precondition), while CInv(u,v) is the concrete invariant, which in original B, involves 
both abstract and concrete variables and thus acts also as a retrieve relation; all of these are predicates. 
[ AOp(u,u') ] and [ COp(v,v') ] are the wppts for the abstract and concrete operations, so the equation  
says that applying the concrete and doubly negated abstract wppts to the after-state retrieve relation 
yields a predicate (on the before-states) that is implied by the before-state quantities to the left of the 
implication. 

Notions of correctness: In original B, precondition (trm) and guard (fis) are distinct concepts (unlike 
Z), albeit connected by the implication ¬ trm ⇒ fis , due to the details of the axiomatic way that these 
two concepts are defined. Moreover, trm ∧  ¬ fis can hold for an operation, permitting miracles, a 
phenomenon absent from formalisms defined in a purely relational manner. In original B, trm is a 
conjunct of any operation's definition, so outside trm, nothing is assumed, and when interpreted 
relationally, it leads to something like a ‘totalisation’ (though different from the Z ones). During 
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refinement, the precondition is weakened and the guard is strengthened, the former of which 
superficially sounds similar to Z, though it is again different technically. 

Interpretation: The interpretation of operation steps for which trm and fis both hold is the 
conventional unproblematic one. Other steps fire the imagination. If trm is false the step aborts, i.e. it 
can start, but not complete normally; modelled relationally by an unconstrained outcome, a bit like 
contract Z. If fis is false the step does not start normally, but can complete; a miracle indeed, usually 
interpreted by saying that the step will not take place if fis is false.  

Trace inclusion: In original B, trace inclusion is not addressed directly, but as a consequence of 
monotonicity. Refinement is monotonic across the B constructors, including sequential composition. 
This yields a notion of weak trace inclusion, since the trm and fis of a composition are an output of a 
composition calculation, not an input, and in particular, cannot be assumed to be the trm and fis of the 
first component, as one would want if one were extending a simulation by considering the next step. 
And even though the sufficient condition for fidelity, above, is a strengthening of the natural B 
refinement condition, it does not lead to an unproblematic strong trace inclusion, since in a relational 
model, we have the additional transitions generated by the ‘totalisation’, and miracles do not give rise 
to actual transitions. 

Composition: In a real sense, the interaction of refinement and composition is not an issue in 
original B. The INCLUDES, USES, SEES mechanisms mentioned above are certainly composition 
mechanisms, but they act exclusively at the top level. Only the finally assembled complete abstract 
model is refined, which avoids the possibility of nonmonotonicity problems, such as those that arise for 
Z [14]. The IMPORTS mechanism allows the combination of independent developments. 

 
3.3. Event-B 

 
Event-B [19-21] emerged as a focusing of original B onto a subset that allows for both more 

convenient practical development, and also an avoidance of the more counterintuitive aspects of the 
original B formalism, such as miracles. 

Formal language: Event-B is rooted in a traditional relational framework, derived by restricting 
original B operations (henceforth called events) to have a trm which is true, and controlling event 
availability purely via the guard, which is the domain of the event transition relation, as in Z. 
Distinguishing between guard and event in the syntax enables event transitions to be defined via 
convenient notations (such as assignment) which are more widely defined than the desired guard. 
Formally, the more exotic possibilities afforded by predicate transformers are no longer needed. 

Granularity and naming: Event-B relaxes the strict (1,1) conventions of original B. As in original B, 
the syntax of the refinement mechanism is embedded in the syntax of the refining machine, so an 
abstraction can be refined in more than one way, but not vice versa. However, a refining event now 
names its abstract event, so an abstract event can have several refinements within the same refining 
machine. New events in a refining machine are implicitly understood to refine an abstract skip, 
something which needed to be stated explicitly in original B, cluttering incremental development. 

Concrete-abstract fidelity: The absence of the more exotic aspects of predicate transformers gives 
the Event-B fidelity PO a quite conventional appearance: 

 
(∀ u, v, v' • AInv(u) ∧  CInv(u,v) ∧  GCEv(v) ∧  CEv(v,v')       
        ⇒ (∃ u' • AEv(u,u') ∧  CInv(u',v')))  

 
This says that assuming the abstract invariant and the concrete invariant (which is again a joint 
invariant i.e. retrieve relation) and the concrete guard for the before-states, and the concrete transition 
relation, yields the existence of an abstract event which re-establishes the joint invariant in the after-
states. 

Notions of correctness: The absence of preconditions distinct from guards simplifies matters 
considerably. The previous ‘weakening of the precondition’ during refinement of an operation, is now 
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taken over by ‘disjunction of concrete guard with guards of all new events is weaker than the abstract 
guard’. This is a quite different criterion, which nevertheless guarantees that if something can happen 
at the abstract level, a suitable thing is enabled at the concrete level. This is also combined with guard 
strengthening in the refinement of individual events, and a well foundedness property to prevent new 
events from being always enabled relative to old events. Totalisations are no longer present in any 
form, which has an impact on trace inclusion (see below). 

Interpretation: The absence of preconditions distinct from guards simplifies interpretational matters 
considerably. There is a firm commitment to the idea that events which are not enabled do not execute, 
avoiding the need to engage with miracles and with spurious transitions generated by totalisation. 

Trace inclusion: In the Event-B context, trace inclusion wins massively. Since for a refined event, 
the concrete guard implies the abstract one, the implication has the same orientation as the implication 
above, so the two work in harmony to enable any concrete step joined to an appropriate abstract before-
state, to be unproblematically simulated, a phenomenon not present in formalisms mentioned earlier — 
simulated moreover, by a ‘real’ abstract event, not a fictitious one introduced via totalisation. New 
events do not disturb this, since they are by definition refinements of skip, which can always 
effortlessly simulate them. So we have genuine, uncluttered, strong trace inclusion. 

Composition: Event-B takes a more pro-active approach to composition than original B. Event-B's 
top-down and incremental approach means that system models start out small and steadily get bigger. 
This allows composition to be instituted via decomposition. As a system model starts to get big, its 
events can be partitioned into subsystems, each of which contains abstractions of the events not 
present. These abstractions can capture how events in different subsystems need to interact, allowing 
for independent refinement, and avoiding the non-monotonicity problems mentioned earlier. 

 
3.4. ASM 

 
The Abstract State Machine approach developed in a desire to create an operationally based 

rigorous development framework at the highest level of abstraction possible. A definitive account is 
given in [8]. 

Formal language: Among all the methodologies we survey, ASM is the one that de-emphasises the 
formality of the language used for modelling the most — in a laudable desire to not dissuade users by 
forcing them to digest a large amount of technical detail at the outset. System states are general first 
order structures. These get updated by applying ASM rules, which modify the FO structures held in 
one or more locations. In a departure from the other formalisms reviewed, all rules with a true guard 
are applied simultaneously during an update, and therefore must be consistent. 

Granularity and naming: The ASM approach tries as hard as it can to break the shackles of 
imposing, up front, any particular scheme of correspondence between abstract and concrete steps 
during refinement. Nevertheless, there must be some correspondence between the two, or else we are 
totally adrift, so to underpin this, an ‘equivalence’ ≡ between the state spaces is postulated, which 
functions as a retrieve relation. It is demanded that the equivalence has to be periodically re-
established, and in order to achieve this, a pair of simulating runs should be broken up into (m,n) 
diagrams of m abstract steps and n concrete ones (for arbitrary finite m + n > 0), without any 
preconceptions about how the (m,n) diagrams are to be arrived at, or which abstract or concrete steps 
might occur in an (m,n) diagram. 

Concrete-abstract fidelity: In striving to be as unrestrictive as possible, ASM does not prescribe 
specific low level formats for establishing refinement. However, one technique, generalised forward 
simulation, established by Schellhorn [22] (see also [23]), has become identified as a de facto standard 
for ASM refinement. This demands that the (m,n) diagrams mentioned above are shown to be 
simulating by having a ‘working’ retrieve relation ≅, which implies the actual retrieve relation ≡. The ≅ 
relation is then used in implications of a similar form to those seen above, except that several abstract 
or concrete steps (or none) can be involved at a time. As many (m,n) diagram simulations as needed to 
guarantee coverage of all cases that arise must then be established. 
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Notions of correctness: It has already been mentioned that the retrieve relation ≡ is referred to as an 
equivalence. While almost all retrieve relations used in practice are in fact partial or total equivalences 
between the state spaces [24], knowing this for sure a priori has some useful consequences. It leads to 
a simple relationship between the guards of the run fragments in simulating (m,n) diagrams, subsuming 
guard strengthening, and eliminating many potential complications. Refinement is defined directly via 
a trace-inclusion-like criterion (periodic re-establishment of ≡), and for (0,n) and (m,0) diagrams, there 
is a well foundedness property to prevent permanent lack of progress in one or other system in a 
refinement. The analogue of ‘precondition weakening’ (though we emphasise that there is no separate 
notion of precondition in ASM) is subsumed by the notion of ‘complete refinement’ which demands 
that the abstract model refines the concrete one (as well as vice versa), thus ensuring that any time an 
abstract run is available, so is a suitable concrete one, yielding persistence of coverage of requirements 
down a refinement chain. Of course not all refinements need to be complete, permitting convenient 
underspecification at higher levels, in a similar manner to Event-B. 

Interpretation: Since states and transitions are defined directly, there are no subtle issues of 
interpretation associated with them. Also, ASM rule firing is a hardwiring of the ‘transitions which are 
not enabled do not execute’ convention into the formalism. 

Trace inclusion: The (m,n) diagram strategy of ASM modifies the notion of trace inclusion that one 
can sustain. The ASM (m,n) notion, at the heart of the ASM correct refinement criterion, can be 
viewed as a generalisation of the Event-B (1,1) strategy. 

Composition: With the major focus being on identifying the ground model, and on its subsequent 
refinement (rather as in original B), the composition of independent refinements is not prominent in 
[8][23]. On the other hand, if ≡ really is an equivalence (or as we would need to have it between two 
state spaces which are different, a regular relation a.k.a. a difunctional relation [24]), there is a 
beneficial effect on any prospective composition of refinements. Many of the issues noted in [14] arise, 
because incompatible criteria about abstract sets (of states, say) which are unproblematic due to the 
abstract sets’ disjointness, can become problematic due e.g. to precondition weakening when the sets’ 
concrete retrieve images become non-disjoint via a non-regular retrieve relation. A regular retrieve 
relation does much to prevent this, facilitating composition of refinements. 

 
3.5. VDM 

 
VDM is among the oldest of the model based refinement methodologies, dating back to the early 

70's [25-28]. Many of the notions that are now routinely found in model based methodologies had their 
earliest incarnations in VDM. 

Formal language: VDM uses conventional discrete mathematical concepts for modelling state. It 
also uses a pre- and post- condition style of specification for state change, so that aspect is basically 
relational. One notable aspect of VDM is that it allows the definition of the body of an operation Op 
say, to be distinct from the definition of its pre- and post- conditions, pre-Op and post-Op respectively; 
this allows the definition of the body to contain imperative elements such as assignments. 
(Specifications refer to operations without a body.) Since a body must satisfy its specification, the 
specification/body distinction means that VDM contains refinement in two different ways: between 
specs and their bodies, and between levels of abstraction (as usual). Another notable feature of VDM is 
the prominent use of a three valued logic for reasoning about partial functions and the like. 

Granularity and naming: The literature on VDM typically features examples which contain 
operations which are reified (VDM-speak for ‘data refined’) to similarly named operations, e.g. OP is 
the reification of the abstract OPa [25]. So there is a (1,1) discipline in place with name almost-identity 
which is not formally prescribed. 

Concrete-abstract fidelity: In VDM concrete-abstract fidelity is taken care of by the Result Rule 
([25] Appendix E.3). Adjusting the notation for easier comparison with formalisms already discussed, 
this comes out as: 
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(∀ v, v' • pre-AOp(R(v)) ∧  post-COp(v,v')       
        ⇒ post-AOp(R(v), R(v'))) 
 

In this, the retrieve function R is exactly that, a function, and the totality of R, and well-definedness of 
all the constituents of the implication are assumed. This allows the whole PO to be stated in terms of 
concrete variables alone. Aside from this, the condition is a simulation condition of a conventional 
kind. The fact that operation bodies are distinct from their pre- and post- conditions, means that the 
relationship between operation bodies and their pre- and post- conditions is captured in POs, amongst 
which, the relevant one has content amounting to the one quoted. 

Notions of correctness: In VDM pre-Op has to imply the domain of Op, making it a guard in earlier 
terminology. Furthermore, preconditions are weakened during refinement, the consequences of which 
are similar to those in Z. 

Interpretation: In the VDM standard [29], the VDM language is given a denotational semantics. 
Since this must give a meaning to all syntactically well-formed utterances of the language, ⊥  is needed 
to cater for non-denoting utterances. This entails a kind of totalisation policy when interpreted in the 
domains of the denotational semantics, the consequences of which can be imagined from earlier 
discussions. 

Trace inclusion: Without spelling it out directly, the preceding will have hinted that VDM runs into 
trouble regarding trace inclusion. Since the preconditions are weakened during refinement, strong trace 
inclusion (of bona fide traces, unpolluted by any spurious transitions generated by the totalisation 
policy) is impossible,2 and a variant of the weak form (derived via the compositionality of the 
denotational semantics of VDM and affected by totalisation, as we have seen before) is the best that 
can be hoped for. 

Composition: The composition of refinement developments is not discussed in the usual VDM 
literature. However, Operation Decomposition allows the body of an operation to be expressed as an 
algorithm using (specifications of) lower level operations — the algorithm has to be proved to be a 
correct implementation of the specification, and VDM provides a collection of Hoare-triple proof rules 
to accomplish this. The approach is very similar in spirit to the way that an original B 
IMPLEMENTATION can IMPORT lower level operations into an algorithm that constitutes the 
IMPLEMENTATION’s body, and the designer has to prove that this algorithm correctly refines the 
system model that the IMPLEMENTATION claims to refine. 

 
3.6. RAISE 

 
Just as original B evolved into Event-B, so one could say that VDM prompted the development of 

RAISE [30-32]. Whereas the former process was one of specialisation, the latter was one of expansion 
and inclusion, in which the model oriented features of VDM were combined with algebraic features 
such as those in OBJ [33], with concurrency features such as those in CSP [34], with modularity 
features such as those in ML [35], with real time, and more. 

Formal language: Compared with all the formalisms we have looked at thus far, the RAISE formal 
language, RSL, is the most wide-spectrum and heavyweight, principally as a result of needing 
structuring mechanisms for all the various flavours of definition that it caters for simultaneously, a 
phenomenon amplified somewhat by the heavily universal-algebra-theoretic nature of most of its 
constructs. Nevertheless, in the state-centric part, states are specified via types and predicates, much as 

                                                                 
2 This is easy to see. Suppose a given concrete trace has been simulated, up to state v say, re-stablishing 
the retrieve relation with an abstract state u. Now v satisfies the precondition of the next concrete step 
by hypothesis. But u has been produced by simulating the previous concrete step. Since abstract  
preconditions are stronger than concrete ones, there is no guarantee that u satisfies the precondition of 
the next abstract step, as it must do to extend the simulation. 
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everywhere else. The richness of RAISE enables state change to be specified in a wide variety of ways, 
including imperative, axiomatic and algebraic. 

Granularity and naming: The foundations of RAISE, based on universal algebra, imply that RAISE 
implementation (RAISE-speak for refinement) is heavily restricted. The refining system must have a 
signature that includes the signature of the refined one. In effect, this typically imposes a rather tightly 
drawn (1,1) discipline, in our terminology. 

Concrete-abstract fidelity: Aside from signature inclusion, the other major plank of the RAISE 
implementation relation, is preservation of the ‘properties’ of the abstract system, where the properties 
constitute a precisely defined theory derivable from the system definition in a prescribed way. This is a 
wide-ranging and abstract definition of refinement, applicable across the whole of RAISE. If one 
focuses on the state-centric part, and works hard enough, a VDM-like fidelity condition emerges, 
which is even more restrictive than the original VDM one, due to the restrictions on signatures. 

Notions of correctness: RAISE’s notion of correctness is that the environment of the system (whose 
understanding of the system is via the system’s abstract model) determines what is asked of the system 
and when. Thus any time an abstract operation is available, any refinement of it must also be available. 
This certainly preserves requirements coverage down through refinement levels. 

Interpretation: With its insistence on viewing the abstract model as well defined and as paramount, 
the idea of asking what the concrete model might do in places where one was not supposed to look (i.e. 
in places which did not directly refine abstract behaviour) is not really in scope for RAISE. One can 
ask the question of course, and if one attempts to answer it in the context of a denotational semantics 
(say), one would detect phenomena similar to ones discussed already. 

Trace inclusion: RAISE has trace inclusion, but the wrong way round (from our point of view). 
Thus, since a trace of the abstract system is a property of the abstract system derivable in a suitable 
way (i.e. provided one defines suitable observers of state transitions etc.), and the preservation of 
properties from abstract to concrete defines the notion of refinement in RAISE, an abstract trace will 
have a corresponding concrete one, but not necessarily vice versa. This is connected with the idea that 
the system's environment has the initiative about which system operations get invoked and when; and 
in particular, that the system itself never takes such initiative. This same idea holds in VDM (due to the 
details of the way that ‘adequacy’ and ‘totality’ restrictions work) and to varying degrees in other 
formalisms that take seriously the idea of ‘weakening the precondition’, but it finds its clearest 
expression in RAISE with its ab initio demands to preserve abstract properties. 

Composition: With its universal algebra-theoretic foundations, the compositionality of RAISE 
developments is a top priority concern. The rather severe restrictions found in various parts of the 
RAISE approach ensure that this aspect works smoothly. 

 
3.7. IO-Automata 

 
IO-automata were introduced in [36] and are discussed in [37]. Textbook treatments are found in 

[38-39] where they constitute a convenient technique for discussing distributed algorithms. 
Formal language: In the formal theory of IO-automata, states are elements of a state set, and state 

transitions involve changing the focus from the before-state to the after-state, in line with the automata 
theoretic flavour. In practical use, rather as in ASMs, the linguistic framework of IO-automata is not 
tightly constrained in order to improve the capacity to communicate. So notions like stacks and queues 
can appear directly in the straightforward imperative-language-like constructions used, instead of 
unravelling them to their basic mathematical ingredients. Thus IO-automata are rooted in a relational 
framework of a conventional kind. 

Granularity and naming: The IO-automata notion of refinement is defined via trace inclusion, and 
established via (m,n) diagrams very like the ones of ASM, but in which n = 1 (i.e. always exactly one 
concrete step). Accordingly, there is no specific restriction on how names of abstract and concrete 
operations should correspond in refinement. 
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Concrete-abstract fidelity: As just noted, the basic refinement criterion is that a concrete step should 
be simulated by zero or more abstract ones. This generates a fidelity PO of a kind similar to the ASM 
one. 

Notions of correctness: One detail not mentioned thus far about the IO-automata fidelity criterion, is 
that concrete steps need be simulable by abstract ones only when the concrete before-state is in the 
retrieve relation with a reachable abstract (before-)state. This is a variation on what is usually stated in 
a fidelity PO, and allows the abstract and concrete systems to behave in incompatible ways in the non-
reachable portions of their transition systems, but does not endanger trace inclusion. 

Interpretation: The automata theoretic perspective of IO-automata implies, as do all automata 
theoretic frameworks, an absence of problematic interpretational issues. The automata theoretic 
perspective is based on the direct depiction of the states and transitions that exist, without introducing 
intensional aspects regarding volition (whether on the part of the system or of the environment) and 
without the use of logical formulae whose interpretation one has to worry about when they evaluate to 
false. 

Trace inclusion: More directly than in any other framework surveyed, IO-automata place trace 
inclusion at the heart of the definition of refinement ([37] discusses several detailed versions). 
Technically, the definition states a weak trace inclusion criterion. However, all practical means of 
establishing trace inclusion are focused on strong trace inclusion via the usual kind of inductive 
technique discussed above. It is clear that the restriction of the fidelity PO to reachable abstract before-
states does not threaten strong trace inclusion (provided one starts things off using the usual 
initialisation PO). 

Composition: The composition of IO-automata is discussed in the cited references. Consistent with 
the automata theoretic flavour, only compatible collections of IO-automata can be composed, 
compatibility amounting to a number of non-interference conditions on the components of an IO-
automaton. These components amount to named operations in our terminology, and their names are 
‘free’, i.e. they are implicitly regarded as residing in a universal name space, and so might clash. For 
compatible (appropriately non-clashing) collections, composition becomes a straightforward product 
construction. With this perspective on composition, the composition of independent refinements is not 
problematic. 

 
3.8. TLA+ 

 
TLA+ [40] evolved as a more complete version of the earlier TLA [41]. The emphasis in TLA+ is 

much more on traces as a whole rather than individual steps considered in isolation. Accordingly, 
temporal properties (notably fairness properties) are much more to the fore. 

Formal language: The trace descriptions in TLA+ are phrased in terms of states and state changes, 
as expected. States are defined using the usual machinery, and state changes are pairs of before- and 
after- states, so that particular aspect is basically relational. State changes are assembled into traces by 
concatenation of individual steps in the usual way. 

Concrete-abstract fidelity: The fundamental notion of refinement in TLA+ (called implementation 
in TLA literature) is based on implication of the temporal logic formula specifying the abstract system 
by the temporal logic formula specifying the concrete system, all up to stuttering since well behaved 
TLA+ specs should be stuttering invariant. The focus on implication as the key idea, means that the 
free variables of the two systems must correspond, and that consequently, things like local variables 
must be appropriately quantified. To prove the implication in practice, one has to strip away these 
quantifications and construct refinement mappings [42], which play the role of our retrieve relations, 
but with the added temporal dimension. Since the concrete trace has to imply the abstract one, we 
effectively regain a conventional fidelity criterion, modulated somewhat by the stuttering invariance 
requirement. 

Granularity and naming: As is clear from the preceding point, since what is demanded is trace 
implication up to stuttering, and the traces are constructed from formulae whose subformulae typically 
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correspond to what we called operations or events above, there is no insistence in TLA+ that these 
subformulae (and more precisely their names) need correspond in any particular way. In practice 
though, in many examples, a straightforward (1,1) meta level correspondence is clearly visible. 

Notions of correctness: With the focus on implication, there is no separate criterion that is aimed at 
policing requirements coverage from abstract down to concrete as in other formalisms, and 
consequently no conflicts with other desiderata arise. 

Interpretation: With the focus on implication, no unusual issues concerning interpretation arise. 
Trace inclusion: With the focus on implication of temporal logic formulae, the link to concrete-to-

abstract trace inclusion is very strong. It has to be remembered though that operation names do not 
figure in the notion of trace relevant to TLA+ and that TLA+ traces are stuttering invariant. 

Composition: An easy consequence of the focus on implication, with its insistence that local 
variables must be quantified, is the fact that independently derived refinements (presumed to refer to 
distinct free variables), can be composed, the quantification of local variables acting in a manner very 
like the equivalences in ASM refinement, in preventing clashes. 

 
4. Semantic Variety 

 
The preceding subsections briefly overviewed a number of well-known model oriented refinement 

paradigms. Even from this cursory look, it is easy to be struck by how so many of the detailed issues 
we have highlighted can be seen to be mere design decisions about one or other aspect of the 
methodology in question. In this sense, it is often the case that one has a choice about how some 
particular issue in some particular formalism, might be handled. The fact that we note that there can be 
a choice is not intended to imply that the choice is made on a whim. In practice the choices are 
typically governed by the higher level concerns that drive the design of the refinement notion. 

In truth, the degree to which such choice arises is significantly controlled by the extent to which the 
refinement notion is derived in a ‘monolithic way’. Thus in RAISE, preservation of abstract properties 
determines a host of other details uniquely; in TLA+ and IO-automata, implication and trace inclusion 
have a similar, though a not quite as far-reaching, effect. On the other hand, the formalisms treated 
earlier in Section 3 could more easily be assembled out of smaller pieces, allowing greater scope for 
replacing a design decision about some aspect with an alternative. We mention a few such potential 
design realignments for purposes of illustration. 

• Regarding Z, one could easily imagine its notion(s) of correctness being substituted by the ones 
from Event-B or ASM. Its notion of trace inclusion would then be replaced by one not requiring the 
use of ‘fictitious’ transitions generated by totalisation. Further options include the VDM or IO-
automata notions of correctness. In fact, alternatives for what we have here called notions of 
correctness for Z, have been explored in [43] and related publications. 

• For B, one could easily imagine adding ⊥  elements to state spaces etc. in order to obtain a 
different relational semantics, with fewer ‘fictitious’ transitions. 

• For Event-B and ASM one could imagine bringing in some aspects of the Z modelling, though it 
appears that little would be gained by doing so. Alternative correctness ideas from IO-automata or 
TLA+ could easily be contemplated. 

• It would not be hard to replace VDM’s notion of correctness by Z’s, B’s, Event-B’s, ASM’s or 
IO-automata’s, thus altering the balance between abstract and concrete models. In fact, the constraints 
of the VDM functional retrieve relation framework were relaxed in Nipkow’s modified fidelity rule 
[44], making it much like the Event-B rule. 

• One could take RAISE’s policy on property preservation as the fundamental criterion, and by 
formulating suitable notions of ‘property’ in the other formalisms, rebuild their notions of refinement 
in that light. Given RAISE's monolithic approach of doing everything via properties, there is less scope 
for low level detailed ‘fiddling’, but if one discarded the monolithic property approach, then the 
semantic framework of RAISE could easily host a wide variety of alternative views. 
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• One could take the IO-automata reachability criterion on the abstract states that must simulate, and 
transplant it painlessly to other formalisms. Equally one could import various different criteria on 
correctness and fidelity from other formalisms into IO-automata without difficulty. 

• One could take TLA+'s policy on implication of temporal logic formulae as the fundamental 
criterion, and re-interpret it in a variety of other formalisms. 

Of course such ideas are not new. In many instances, alternatives of one kind or another have been 
investigated, whether in the normal research literature or as student research projects. Although we do 
not attempt to catalogue all the variations that have been considered over the years, two, both 
connected with B, are worth noting for their practical impact. 

One is found in the context of ProB [45], a model checker and animator for the B-Method first 
implemented for original B. There, the original B preconditions are re-interpreted as (i.e. given the 
semantics of) additional guards. Such a move is needed to ensure that the theoretical constructions at 
the heart of model checking remain valid. 

The other is found in the context of the Météor Project [46], where the semantics of original B was 
modified to explicitly check well-definedness conditions for applications of (partial) functions, using 
techniques going back to Owe [47]. This was in recognition of the need to be more careful about 
domains of partial functions and operations in the context of a safety-critical application. In Event-B, a 
more recent development, such checks are built in ab initio, and Event-B’s semantics fits model 
checking needs much better too. 

What the above variety, and the associated remarks, make clear, is that there is no unique consensus 
about what constitutes model based refinement. Different setups are created with different kinds of 
requirements scenarios either explicitly or implicitly in mind, and the resulting formalisms are 
promoted as being relatively general purpose, a view that holds up as long as a requirements scenario 
that does not differ too markedly from the initial ones is not encountered. If a sufficiently different 
requirements scenario is encountered, then a common reaction (at least in the research literature) is to 
invent a new model based refinement paradigm, better suited to the scenario at hand. In more industrial 
environments, the reaction may well be to ‘make do’ as best one can, or to quietly decide not to bother 
with formal techniques in future. 

In the light of this variety, one thing that we can do, is to look for areas of commonality between the 
different formulations. We can take the view that the more commonly a particular feature or design 
decision occurs amongst different frameworks, the more it contributes to the ‘essence’ of model based 
techniques. Conversely if a feature is only rarely found, it is easier to justify trading it for an 
alternative. Roughly speaking, it is the intersection rather than the union of features among different 
frameworks that we focus on. 

To this aim, one cannot help notice that the area most free from excessive variation has been what 
we call the ‘concrete-abstract fidelity’ area. This indicates a strong consensus among approaches that 
simulation (in one form or another) is the key criterion that techniques must establish. 

One cannot help further notice that the places where the greatest semantic variety is to be found, 
occur in the ‘notions of correctness’ and ‘interpretation’ areas. One can attribute a lot of this variation, 
to different views on the extent to which the abstract model should dictate what the concrete model 
does. In other words, does the abstract system demand that the concrete one furnishes some (suitable) 
counterpart to every behaviour it is capable of, or does the abstract system merely provide a container 
beyond which the concrete one is not allowed to stray? Different views on what refinement is for, 
heavily influence the preference for one or the other perspective. 

On this point, one can argue both ways. Demanding that the abstract system demands concrete 
compliance, ensures requirements coverage (suitably interpreted), but clutters the formalism with 
(possibly many) additional POs; ones, moreover, that can have a detrimental effect on trace inclusion 
unless one is particularly careful. Not demanding that the concrete system cover every move of the 
abstract one frees the formalism from many extra POs, and is helpful for trace inclusion, but potentially 
lets through the possibility of explicitly empty (including syntactically contradictory) implementations, 
resting on the ‘don't care’ discharge of the implication at the heart of any fidelity PO, when its 
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hypothesis is false. One could counter this by saying that no one would entertain an explicitly empty 
implementation, but then, inadvertently ending up with one that was semantically empty, by virtue of 
hiding a contradiction within the labyrinth of a large syntactic description, can happen much more 
easily. Also, the more developers rely on tools, the more likely they are to become personally 
inattentive, slipping easily into the mode of believing all is well just because a tool has said ‘OK’, even 
if it was on the basis of an unsatisfiable hypothesis. Matters are made more complicated in the latter 
case by virtue of the fact that a code generator working on such an implementation definition (i.e. one 
that was contradictory in this way) would not be sensitive to its semantic emptiness, and, blissfully 
unaware, could generate a lot of code, large amounts of which would actually be entirely useful. 

It becomes clear why there is so much variation in views around the issue of notions of correctness. 
By contrast, other issues from Section 2, such as ‘formal language’, ‘granularity and naming’ and 
‘trace inclusion’, ‘composition’, can be seen as either setting the stage for creating a given framework, 
or as derivable consequences of the design decisions taken. 
 
5. Retrenchment 

 
The previous sections dissected what goes into a typical model based refinement framework. We 

saw that each such notion examined, depended on a number of design decisions about various aspects 
of the development process. The trouble with this is that, once these design decisions are made, 
formalisation casts them in stone to a large degree. At some later point, along comes a case study for 
which the previously made decisions turn out to be less than optimal. Then, a struggle can ensue to 
make the problem fit the technique. The result can be successful, or not, to varying degrees. 

Retrenchment was invented as a response to the phenomenon that a given refinement technique (or 
even refinement techniques in general) do(es) not always fit all application scenarios in which the 
rigour characteristic of such techniques is desirable, and that consequently, some means of reconciling 
those aspects of the application that did not fit well into the selected refinement technology with those 
that did, was desirable. And the greater the rigour that could be brought to bear on this issue the better. 
Although retrenchment arose in the context of the B-Method [48], it seemed evident, even at the outset, 
that one should design similar notions for other approaches too. With the accumulated experience of 
the intervening years, we can now set out how to do this. 

Notions of refinement are intended to give a priori guarantees that the more concrete model 
conforms in a certain way to the abstract one. Often it is glibly stated that ‘the concrete model 
preserves all the properties of the abstract model’ but this is palpably false unless one makes the 
technical terms in the remark, such as ‘all’ and ‘properties’, quite precise, and either proves a suitable 
theorem, or takes the ensuing statement as the definition of refinement and derives the consequences 
(as in the RAISE approach). Security properties usually provide the quickest route to demolishing such 
too-loosely-phrased ‘property preservation’ statements [49]. 

By contrast, the role of retrenchment is not so much to propose a priori properties ―recognising 
that it would be almost impossible to predetermine every possible way in which the formulation of a 
refinement notion might prove inconvenient in practice― and much more to provide a framework 
within which such incompatibilities might be described in general terms, and linked in a formal way to 
what the refinement notion can accomplish. Often it will be true that particular, much stronger, 
properties might follow in a specific application area, but it is better (from the real world developer’s 
perspective) to have these emerge as a strengthening of the general theory of retrenchment, than to 
develop a special purpose theory whose remit, in practice, might be confined to just that case ― 
bringing into being therefore as it would, the necessity of developing an alternative theory for every 
different problem. 

 
5.1. Key Features of Retrenchment Designs 

 



International Journal of 
Soft Computing and Software Engineering (JSCSE) 
 
Vol.5, No.2, 2015 
 

 
e-ISSN: 2251-7545 
DOI: 10.7321/jscse.v5.n2.1 

 
 

46 
 

Above, we saw that what the overwhelming majority of model based refinement notions had in 
common, was the concrete-abstract fidelity criterion. Given that what we seek in retrenchment is the 
maximum flexibility of expressiveness, and yet we have to keep something relatively fixed (else it is 
difficult to speak of a single unifying notion), we make the concrete-abstract fidelity criterion the 
predominant focus of retrenchment designs. 

Equally, we saw above that there was a wide variety of views in what we referred to as the ‘notions 
of correctness’ area, which could be viewed as arising by adopting a corresponding variety of 
subsidiary design decisions, and adding their consequences to the fidelity PO. Since the consequences 
of adopting different design decisions in this area are often incompatible with each other, we determine 
that retrenchment should not be prescriptive in this area, in order to maximise the applicability of 
general retrenchment principles to a wide variety of domains, with different domains exhibiting 
different perspectives on how the theory connects with reality.3  

Thus, retrenchment should align with refinement where there is a high degree of commonality of 
views, in order to enhance interworking, and should desist from committing itself where there is a high 
degree of diversity of views, acting in the latter case, as a counterbalance to the excessive specificity 
that would otherwise arise. 

A further guiding principle that we would like to see embodied in retrenchment, is that its fidelity 
PO should reduce to (the appropriate version of) the refinement fidelity PO under suitable 
circumstances, i.e. when the requirements issues that it is designed to cover trivialise. 

The means by which retrenchment achieves all these things is to modify the fidelity PO of 
refinement, to gain greater expressivity. As we have seen, refinement fidelity POs, across all the 
formalisms reviewed, come down to an implicative structure, based on re-establishing a retrieve 
relation. Accordingly, retrenchment modifies this by introducing a number of additional relations into 
the fidelity PO: a within relation W that strengthens the hypotheses of the implication, to restrict the 
scope of the statement, where needed; an output relation O strengthening ‘good’ outcomes in the 
conclusion by permitting the incorporation of detail not expressible within the constraints of the 
refinement formalism; and a concedes relation C in the conclusion, occurring disjunctively, to allow 
the description of behaviours that violate the retrieve relation. In ‘formalism-independent’ terms, the 
generic fidelity PO that emerges has the appearance of the TLA+ case below, assuming one ignores 
any TLA+-specific connotations. 

Since the justification for this general approach has been extensively discussed elsewhere in an 
abstract setting (see e.g. [6-7]), and its utility has been well borne out in case studies, notably those 
concerning the Mondex Purse (see e.g. [50-53]}) we do not repeat all that here, concentrating instead 
on checking how the general ideas fit with the specific formalisms we have looked at. We note though, 
that letting W and O to default to true and C default to false does indeed yield the desired continuity 
with refinement notions in the I/O-free case.4  

 
5.2. Tower Compatibility 

 
Thus far, we have concluded that retrenchment should concentrate on a modified fidelity PO, and 

largely disregard ‘notions of correctness’ criteria, supporting this stance using predominantly heuristic 
                                                                 
3 In the early days of retrenchment, when [48] and similar papers were written, it was presumed that 
retrenchment ought to make suitable demands regarding notions of correctness and the like. It took a 
considerable time, conclusively confirmed by experience with the Tower Pattern (see Section 5.2), to 
convince us that such a position, while tenable, was nevertheless ill advised. One might conjecture that 
just as the most problematic errors in system design arise from missing requirements, so the subtlest 
problems in designing system design methodologies can be attributed to determining what 
requirements ought to be missing. 
4 Where there is I/O, W and O default to the ‘natural’ correspondences between the input spaces and 
output spaces respectively. 
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evidence. This position is considerably strengthened when we consider refinement/retrenchment 
interworking.  

Besides the retrenchment fidelity PO defaulting to the refinement one when W, O, C, suitably 
trivialise, we need to consider how retrenchment and refinement co-operate during the course of a 
system development in which each participates non-trivially. The key criterion here is Tower 
Compatibility, and it refers to the conditions that must hold in order to avoid the interpretational 
pathologies of some of the refinement approaches, and in order that the basic constructions of the 
Tower Pattern can be established. 

The Tower Pattern itself is built out of ‘commuting’ squares of refinements and retrenchments, such 
as occur in the figure below. In the figure, refinements are vertical arrows (RefAC and RefBD, going from 
the abstract system to the concrete one), and the retrenchments are horizontal arrows (RetAB and RetCD, 
also going from the abstract system to the concrete one). The ‘commuting’ nature of the diagram 
expresses the compatibility between the two notions that we seek. We said ‘commuting’ in inverted 
commas because the precise sense in which commutativity is intended, and the extent to which it is 
actually achieved (in a given collection of theoretical results) varies, depending on the precise 
theoretical direction taken. In [54], a suite of ‘square completion’ results was proved that interpreted 
commutativity as equality ‘on the nose’ of the two retrenchments resulting from composing the 
retrenchment/refinement pairs going round the square in two ways from system A to system D. 
Although superficially appealing, the technical details of pursuing this approach turned out to be eye-
wateringly complicated. More recently, the question has been revisited in [55]. There, the 
commutativity was interpreted as compatibility of the two retrenchments resulting from composing the 
retrenchment/refinement pairs going round the square, in the sense that each of the composed pairs 
expressed a part of a larger retrenchment from A to D. The latter could in turn be calculated from the 
two composed the retrenchment/refinement pairs using a form of composition of retrenchments called 
fusion composition (see [55] for details). The technical complexity of constructing the square 
completions using this approach (and of associated technical issues whose details need not concern us 
here) was dramatically reduced. 

 

 
 
Both investigations showed that a simple criterion facilitated retrenchment/refinement interworking. 

Stated informally and in generic terms, it amounts to the statement that the within relation must be 
stronger than any criterion that contributes to the definition (in terms of before-states and inputs) of 
‘well behaved’ transitions in either the abstract or concrete system. This is the Tower Compatibility 
PO. A ‘formalism-independent’ statement of it resembles the TLA+ case below, assuming one ignores 
the TLA+-specific connotations. However, it is to be noted that since it constitutes the interface 
between retrenchment notions and the rather varied ‘correctness’ notions of a variety of refinement 
formalisms, there is more variation among the specific incarnations of the Tower Compatibility PO 
than among those of the fidelity PO, as we see below. 

To elaborate a little further, in the formalisms we surveyed briefly above, we often encountered 
entities such as preconditions, termination conditions, guards, etc. They were all expressible using 
predicates in the before-states (and inputs). Moreover, different refinement notions contained different 
numbers of these entities, and their precise behaviour in the passage from abstract to concrete system 
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also varied considerably. The Tower Compatibility criterion says that no matter what the number or 
demanded behaviour in relation to the refinement notion under consideration is of these entities, the 
within relation for the associated notion of retrenchment, must be stronger than every such entity. 
Further illustration of the concept is best done in the context of some specific notions of retrenchment, 
to which we turn next. 

 
6. Retrenchment Designs for Various Refinement Notions 

 
Thus, we have come to the conclusion that retrenchment should comprise a fidelity PO compatible 

with the one used for refinement, and a compatibility condition for tower interworking. To this we add 
an initialisation PO like the standard refinement one. We now review how this works out for the 
refinement notions examined above. Further general background can be found in [6-7]. 

 
6.1. Retrenchment for Z 

 
The Z version of retrenchment has been extensively exercised in the context of the Mondex 

retrenchment case studies [50-53]. In Z, retrenchment amounts to the initialization PO:5  
 
(∀ CState'(v') • CInit'(v') ⇒ (∃ AState'(u') • AInit' (u') ∧  R'(u',v'))) 
 

and the fidelity PO: 
 
(∀ AState(u) ; CState(v) ; CState'(v') • R(u,v) ∧  WOp(u,v) ∧  COp(v,v')       
        ⇒ (∃ AState'(u') • AOp(u,u') ∧  ((R'(u',v') ∧  OOp(u',v',u,v)) ∨  COp(u',v',u,v))))  

 
Added to the above is the tower compatibility condition, which comes out as: 

 
(∀ AState(u) ; CState(v) • R(u,v) ∧  WOp(u,v) ⇒ pre AOp(u) ∧  pre COp(v)) 
 

with evident addition of (input state schemas and) input variables to WOp(u,v) when I/O is present. 
 

6.2. Retrenchment for B  
 
For original B, the fidelity PO is an adaptation of the relevant refinement condition: 
 
AInv(u) ∧  R(u,v) ∧  CInv(v) ∧  WOp(u,v) 
        ⇒ [ COp(v,v') ] ¬ [ AOp(u,u') ] ¬ ((R(u',v') ∧  OOp(u',v' …)) ∨  COp(u',v' …)) 
 

However, compared with the refinement version, the above conceals a few subtleties. First of all, we 
have separated the two roles of CInv(v): namely to act as the intrinsic invariant of the concrete system, 
and to act as the retrieve relation between abstract and concrete. The former role is still called CInv(v) 
while the latter is covered by new predicate R(u,v) explicitly. Secondly, predicate transformers 
transform after-values of state variables into before-values. To enable relationships involving both to 
be expressed (as in OOp(u',v' …) and COp(u',v' …)), one must use auxiliary variables, introducing 
defining occurrences for them in WOp(u,v) for the before-values, and reference occurrences in 
OOp(u',v' …) and COp(u',v' …), a standard B trick, indicated by the ellipsis. Thirdly, one must use 

                                                                 
5 Since the initialisation PO is defined to be identical to that for (the relevant notion of) refinement, a 
policy persists unchanged through all the formalisms we cover, we will not mention initialisation 
further below. 
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similar devices to model I/O: variables that are referenced but not updated for input, and variables that 
are updated but not referenced for output. 

Added to this is the tower compatibility condition (with the obvious signature embellishment when 
I/O is present), which is more complex than for other formalisms, since preconditions and guards are 
(at least partly) independent in original B: 

 
AInv(u) ∧  R(u,v) ∧  CInv(v) ∧  WOp(u,v) 
        ⇒ trm AOp(u) ∧  trm COp(v) ∧  grd AOp(u) ∧  grd AOp(v) 
 

6.3. Retrenchment for Event-B  
 
Retrenchment for Event-B has been treated in fair detail in [56-57]. Here we just summarise the 

essentials for comparison with other formalisms. Compared to original B, retrenchment for Event-B is 
considerably simpler conceptually, due to the possibility of referring to both before- and after-variables 
in the same expression, without recourse to ‘back-door’ techniques such as auxiliary variables. The 
fidelity PO is straightforwardly relational: 

 
(∀ u, v, v' • AInv(u) ∧  R(u,v) ∧  CInv(v) ∧  WEv(u,v) ∧  GCEv(v) ∧  CEv(v,v')       
        ⇒ (∃ u' • AEv(u,u') ∧  ((R(u',v') ∧  OEv(u',v',u,v)) ∨  CEv(u',v',u,v))))  
 
In this we again separated retrieving properties from concrete invariant properties. Since Event-B 

encourages seeing I/O variables as being on the same footing as state variables, i.e. there is no specific 
category of output variables, the presence of OEv becomes almost dispensible (and in fact [56] develops 
the OEv-free version of the theory in detail). However, if one wants the PO to guarantee some 
strengthening of the retrieve relation via the PO, then recourse to OEv is needed. If all that is desired is 
a convenient container into which one can put some provable facts, then CEv by itself will do (the issue 
is discussed further in [6]). The tower compatibility condition is: 

 
AInv(u) ∧  R(u,v) ∧  CInv(v) ∧  WOp(u,v) 
        ⇒ grd AOp(u) ∧  grd AOp(v) 

 
6.4. Retrenchment for ASM 

 
For ASM, the main difference compared with preceding formalisms is brought about due to the fact 

that we deal with (m,n) diagrams, rather than (1,1) diagrams. This introduces additional quantifications 
not present elsewhere. Let CFrags be the set of concrete execution fragments that we have previously 
determined will permit a covering of all concrete execution sequences of interest (and thus whose 
simulation will guarantee strong trace inclusion). We write v::vs::v' ∈ CFrags to denote an element of 
CFrags starting with v, ending with v', and with intervening state sequence vs. Then the ASM fidelity 
PO for retrenchment becomes: 

 
(∀ u, v, vs, v' • v::vs::v' ∈ CFrags ∧  u ≡ v ∧  WAOps,COps(u,v) ∧  COps(v::vs::v')       
        ⇒ (∃ us, u' • AOps(u::us::u') ∧  ((u' ≡ v' ∧  OAOps,COps(u',v',u,v)) ∨  CAOps,COps(u',v',u,v)))) 
 

In this, ≡ is the ASM retrieve relation equivalence between abstract and concrete state spaces discussed 
earlier, and COps(v::vs::v') is a concrete fragment that we need to simulate, where v::vs::v' ∈ CFrags is 
the sequence of states in the concrete part of the (m,n) diagram. Similar notations hold at the abstract 
level. Since us and u' are existentially quantified inside the outer quantification, both the length of 
u::vs::u' and the abstract operations involved, depend in detail on the concrete fragment chosen. The 
within, output and concedes relations, now depend on both sequences of operations AOps and COps, 
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since there is no predefined naming convention in force between abstract and concrete names. 
Moreover, the output and concedes relations have been shown as depending only on the extreme 
abstract and concrete states; a more detailed dependence on the internal states can obviously be 
demanded, especially since, in practice, the given relation would be proved by examining 
corresponding concrete and abstract behaviours in detail. Again, I/O can be added unproblematically. 

Finally, the tower compatibility condition becomes: 
 
u ≡ v ∧  WAOps,AOps(u,v) ⇒ dom AOps(u) ∧  dom COps(v) 
 

6.5. Retrenchment for VDM 
 
For VDM, there is little change compared with the relational worlds of Z and Event-B, except for 

the stronger assumptions in force regarding the retrieve function, namely: totality, adequacy, and (of 
course) the fact that it is required to be an actual function. Building all this, as appropriate, into the 
fidelity PO, we get: 

 
(∀ u, v, v' • u = R(v) ∧  WOp(u,v) ∧  post-COp(v,v')     
        ⇒ (∃ u' • post-AOp(R(v), u') ∧  ((u' = R(v') ∧  OOp(u',v',u,v)) ∨  COp(u',v',u,v)))) 
 

and tower compatibility reduces to: 
 
u = R(v) ∧  WOp(u,v) ⇒ pre-AOps(u) ∧  pre-COps(v) 
 

The consequences of introducing explicit I/O into these relations are easy to imagine. 
 

6.6. Retrenchment for RAISE 
 
As we said earlier, RAISE is a very broadly based formalism. On the basis that appropriate 

observers are formulated to enable transitions to be described and reasoned about, the refinement 
criterion for the model-based part is very VDM-like. Accordingly, the retrenchment notion that will be 
appropriate will be as for VDM, so we do not quote it again. 

 
6.7. Retrenchment for IO-Automata 

 
We noted above that the IO-automata notion of refinement reduced to a special case of ASM 

refinement. Therefore the corresponding retrenchment notion will specialise the ASM notion too. 
Bearing in mind that there is always exactly one concrete step COp(v,v') involved, the fidelity PO 
becomes: 

 
(∀ u, v, v' • R(u,v) ∧  WAOps,COp(u,v) ∧  COp(v,v')       
        ⇒ (∃ us, u' • AOps(u::us::u') ∧  ((R(u',v') ∧  OAOps,COp(u',v',u,v)) ∨  CAOps,COp(u',v',u,v)))) 
 

while tower compatibility becomes a slight modification of the ASM version: 
 
R(u,v) ∧  WAOps,COp(u,v) ⇒ dom AOps(u) ∧  dom COp(v) 
 

6.8. Retrenchment for TLA+ 
 
We noted above that the TLA+ refinement notion was based on implication of temporal logic 

formulae, a requirement that demands the inclusion of concrete observable behaviour within the 
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observable behaviour permitted for the abstract system. This is a quite pure notion of ‘black box’ 
refinement. Retrenchment however, is chiefly concerned with expressing, in a ‘glass box’ manner, 
refinement-theoretic incompatibilities that arise during development in real world scenarios [6]. This 
makes insisting on implication between TLA+ formulae, into an inappropriate criterion on which to 
base a corresponding definition of retrenchment, without making it unduly restrictive. Accordingly, the 
most appropriate notion of retrenchment for TLA+ utilises the pure transition system formulation given 
in [6], for which the fidelity PO is: 

 
(∀ u, v, v' • R(u,v) ∧  WOp(u,v) ∧  COp(v,v')       
        ⇒ (∃ u' • AOp(u,u') ∧  ((R(u',v') ∧  OOp(u',v',u,v)) ∨  COp(u',v',u,v)))) 
 

To this we add the tower compatibility PO: 
 
R(u,v) ∧  WOp(u,v) ⇒ dom AOp(u) ∧  dom COp(v) 
 
We observe that both of these work at the level of individual steps, so any interaction with stuttering 

must be taken care of at a level meta- to the one figuring in the POs above. 
Of course, thinking about stuttering unavoidably warrants thinking about execution sequences, and 

about the fact that our POs do not offer any guarantees that any kind of inductive correspondence can 
be constructed between concrete and abstract executions without additional assumptions. Such 
questions concern the mapping of system properties under retrenchment, a topic outside the scope of 
this paper.  

 
7. Discussion and Conclus ions 

 
In this paper, we have examined some key features of a representative number of well-known 

refinement methodologies, and commented on their similarities and differences. We noted that many 
features were not especially specific to the methodologies in which they were found, and that we could 
just as easily transplant them elsewhere ― the one notable exception to this perhaps being RAISE, 
with its monolithic derivation of everything from the idea of formal property preservation. 

We took the evidence accumulated thereby, and used it to support the way that retrenchment is 
formulated in general, and showed how this policy could be made concrete in the refinement 
methodologies previously examined. This general analysis of retrenchment, and its unified detailing in 
the specific methodologies mentioned, constitute the main contributions of this paper. The high degree 
of similarity among the various specific notions, upholds a view that the essence of retrenchment has 
been correctly identified. Additional supporting leverage for the way that retrenchment has been 
formulated came from the algebraic theory of the Tower Pattern, which supplied crucial extra insight 
relevant to the ‘notions of correctness’ area, the place where the widest diversity of detailed views is 
typically found. 

The clean interaction between refinement and retrenchment is vital for practical working in general, 
and for support by tools in particular. The Frog tool [58-59] is an experimental tool whose design 
incorporates the flexibility needed to smoothly integrate the POs of refinement and retrenchment in the 
manner suggested, and so, shows the path that more industrial strength tools could follow. Such a tools 
strategy is also in harmony with the call for an Evidential Tool Bus [60]. This is a tools framework 
which would allow different tools, focusing on different aspects of verification, to communicate their 
findings to other tools, and to include other tools’ results in their own deliberations. Moreover, the 
tools strategy being advocated is also in harmony with the currently active Verification Grand 
Challenge [2-4], whose remit is not only to put large scale verification case studies into the public 
domain, so as to promote the uptake of formal techniques in general, but also to aid tool integration, so 
that industrial scale formal development can be done with increasing cost effectiveness. 
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